期刊文献+

一类具有脉冲的Nicholson果蝇模型周期解的存在性和全局吸引性 被引量:4

EXISTENCE AND GLOBAL ATTRACTIVITY OF POSITIVE PERIODIC SOLUTIONS FOR THE NICHOLSON'S BLOWFLIES MODEL WITH IMPULSES
下载PDF
导出
摘要 研究了下列具有脉冲现象的Nicholson果蝇模型{N′(t)=-δ(t)N(t)+p(t)N(t-mω)e-a(t)N(t-mω),t>0,t≠tkN(tk+)-N(tk)=bkN(tk),k=1,2,…的正周期解~N(t)的存在性问题及其部分动力学行为.当m=0时,得到上述方程存唯一正周期解N~(t),并且是全局渐近稳定的;当m≠0时,给出了~N(t)是全局吸引的充分条件. In this pater,we consider the following nonlinear impulsive delay Nicholson's blowflies model{N'(t)=-δ(t)N(t)+p(t)N(t-mω)e-a(t)N(t-mω),t〉0,t≠tkN(t+k)-N(tk)=bkN(tk),k=1,2,…,we can get the existence and some dynamical behaviors of the positive periodic solution(t).In the nondelay case(m=0),we show that model has a unique positive periodic solution N~(t) which is globally asymptotically stable.In the delay case(m≠0),we present sufficient conditions for the global attractivity of N~(t).
出处 《山东师范大学学报(自然科学版)》 CAS 2008年第1期12-15,共4页 Journal of Shandong Normal University(Natural Science)
关键词 正周期解 存在性 全局吸引性 脉冲 psitive periodic solutions existence global attractivity impulses
  • 相关文献

参考文献12

  • 1Bainov D D,Simeonov P S.Systems with Impulse Effect,Theory and Applications[M] .New York:Halsted, 1989.
  • 2Lakshmikantham, Bainov D D,Simeonov P S.Theory of Impulsive Differential Equations[ M] .Singapore: World Seientific, 1989.
  • 3Saker S H,Alzabut J O. Periodlc solutions, global attractivity and oscillation of an impulsive delay host- macroparasite model[J] .Math Comput Modelling, 2007, (45) :531 - 543.
  • 4Shen H, Liu X Z. Global existence results for impulsive differential equations[ J] .J Math Anal Appl,2006, (314) :546 - 557.
  • 5Li W T, Fan Y H. Existence and globa attractivity of positive periodic solutions for the impulsive delay Nicholson's blowflies model[J]. Comput Appl Math, 207, (201) :55 - 68.
  • 6Yan J R. Existence and global attractivity of positive perodic solution for an impulsive Lasota- Wazewska model[J] .J Math Anal Appl,2003, (279) : 111 - 120.
  • 7Gurney W S C, Blythe S P, Nisbet R M. Nicholson's blowflies revisited[ J]. Nature, 1980, (287) : 17 - 21.
  • 8Chen Y M. Periodic solutions of delayed periodic Nicholson's blowflies models[ J]. Canadian Appl Math Quarterly,2003,11 (1):23 - 28.
  • 9Saker S H, Agarwal S. Oscillation and global attractivity in aperiodic Nicholson's blowflies model[ J]. Math Comput Modelling,2002, (35):719 - 731.
  • 10Cui J.The effect of dispersal on permanence in a predate-prey population growth model[J]. Comput Math Appl,2002, (44):1 085 - 1 097.

同被引文献39

引证文献4

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部