摘要
研究了下列具有脉冲现象的Nicholson果蝇模型{N′(t)=-δ(t)N(t)+p(t)N(t-mω)e-a(t)N(t-mω),t>0,t≠tkN(tk+)-N(tk)=bkN(tk),k=1,2,…的正周期解~N(t)的存在性问题及其部分动力学行为.当m=0时,得到上述方程存唯一正周期解N~(t),并且是全局渐近稳定的;当m≠0时,给出了~N(t)是全局吸引的充分条件.
In this pater,we consider the following nonlinear impulsive delay Nicholson's blowflies model{N'(t)=-δ(t)N(t)+p(t)N(t-mω)e-a(t)N(t-mω),t〉0,t≠tkN(t+k)-N(tk)=bkN(tk),k=1,2,…,we can get the existence and some dynamical behaviors of the positive periodic solution(t).In the nondelay case(m=0),we show that model has a unique positive periodic solution N~(t) which is globally asymptotically stable.In the delay case(m≠0),we present sufficient conditions for the global attractivity of N~(t).
出处
《山东师范大学学报(自然科学版)》
CAS
2008年第1期12-15,共4页
Journal of Shandong Normal University(Natural Science)
关键词
正周期解
存在性
全局吸引性
脉冲
psitive periodic solutions
existence
global attractivity
impulses