摘要
给出了逻辑方程组成立的充要条件和化逻辑方程组为0型或1型逻辑方程的方法,证明了若两个0型逻辑方程的解集分别为S1,S2,则对应的逻辑方程组的解集为S1+S2;若两个1型逻辑方程的解集分别为S3,S4,则对应的逻辑方程组的解集为S3+S4,从而可应用此结论解非0非1型逻辑方程构成的逻辑方程组。
The sufficient and necessary condition of forming logic equation group is given, and change logic equation group into zero type and one type logic equations. It gets the following conclusion S1 + S2: If solution sets of two zero type logic equations are S1, S2 separately, thus solution set of logic equation group is S1 + S2 ; If solution sets of two one type logic equations are S3, S4 separately, thus solution set of logic equation group is S3 + S4, so we can apply the conclusions to solve logic equation group composed of non-zero type and non-one type logic equations.
出处
《北华大学学报(自然科学版)》
CAS
2008年第1期9-11,共3页
Journal of Beihua University(Natural Science)
基金
山东省教育厅科研基金资助项目(J06P14)
关键词
逻辑方程组
非0非1型
解法
Logic equational group
Non-zero type non-one type
Solution method