摘要
针对学习型社区中的教育需求,在传统算法上加以改进,提出了一种基于向量空间模型的教育资源自适应过滤算法.通过训练算法,提取特征向量和伪反馈建立初始模板,设置初始阈值.然后通过过滤算法根据用户的反馈信息自适应地调整模板和阈值.该算法在执行过程中,不需要大量的初始文本,同时在过滤的过程中可不断地进行自主学习来提高过滤精度.该算法已在个性化知识服务系统中进行验证,结果表明是有效的.
To effectively provide personalized E-learning in a community, an adaptive filtering algorithm for identifying appropriate teaching resources was developed. It is based on a vector space model, an improvement on traditional algorithms used for this purpose. Firstly, feature selection and pseudo feedback were used to establish the initial templates and thresholds through a training algorithm. Then the user's feedback was utilized to modify the templates and thresholds adaptively for the filtering algorithm. The algorithm did not need massive quantities of initial texts to begin the process of filtering. Furthermore, filtering precision improved during the process through self learning. The algorithm proved effective as a personalized knowledge service system for community E-learning.
出处
《智能系统学报》
2008年第1期91-94,共4页
CAAI Transactions on Intelligent Systems
基金
国家自然科学基金资助项目(60533080)
“973”基金资助项目(2002CB312100)
“863”基金资助项目(2006AA01Z303)
关键词
自适应过滤
个性化知识服务
相似度
终身化学习
adaptive filtering
personalized knowledge service
similarity
lifelong education