期刊文献+

正则化学习算法在软测量建模中的应用

Regularization Learning Algorithm Applied for Soft-sensing Modeling
下载PDF
导出
摘要 软测量技术的核心是建立软测量模型。基于过程可测信息集建立软测量模型即逼近建模过程是不适定的。以径向基函数神经网络作为软测量模型,在软测量建模中引入正则化学习算法。以广义交叉验证作为正则化参数估计方法,讨论了径向基函数神经网络软测量逼近建模的全局与局部正则化学习算法,给出的实例说明了其有效性。 The core of soft-sensing techniques is soft-sensing modeling. It is ill-posed that the design of soft-sensing model based on measured data in process control. Using RBF ( Radial Basis Function) network as the soft-sensing model, it's natural to introduce regnlarization learning algorithm. The Regularization parameters are estimated by GCV ( Generalized Cross Validation)in the paper. Global regnlarization and local regnlarization learning algorithms of soft sensing modeling based on RBF network are introduced respectively. The effectiveness is demonstrated in the case study.
出处 《机电一体化》 2008年第1期34-37,共4页 Mechatronics
基金 国家教育部重点项目基金"基于磁流变液的高速控制机理研究与实现"(01074)。
关键词 软测量技术 逼近建模 正则化学习 不适定性 径向基函数神经网络 soft-sensing techniques approximating modeling regularization learning ill-posed RBF network
  • 相关文献

参考文献10

  • 1JOSEPH B, BROSILLOW C B. Inference control of process[J]. American Institute of Chemical Journal, 1978,24 (3) :485 - 508.
  • 2于静江,周春晖.过程控制中的软测量技术[J].控制理论与应用,1996,13(2):137-144. 被引量:147
  • 3AVOY T M. Intelligent "control" application in the process industries [ J ]. Annual Reviews in Control, 2002,26:75 - 86.
  • 4SULLIVAN F O. statistical perspective on ill-posed inverse problems [ J ]. Stat. Sci, 1986, 1:502 - 527.
  • 5Tikhonov, Goncharsky, Stepanov, Yagola. Numerical Methods for the Solution of Ill-posed Problems [ M ]. Dordrecht: Kluwer Academic Publishers, 1995.
  • 6POGGIO T, GIROSI F Girosi. Networks for approximation and learning [J]. Proc. IEEE, 1990,78(9) :1481 -1497.
  • 7MARIO BERTERO, TOMASO A, POGGIO, et al. Ill -posed in early vision[J]. Proc. IEEE,1988,76(8) :869 -889.
  • 8MARTIN BURGER, HEINA W. Training neural networks with noisy data as an ill- posed Problem [ J ]. Advances in Computational Mathematics, 2000(13) : 335 -354.
  • 9GEMAN S, BIENENSTOCK E, DOURSAT R. Neural networks and the bias/variance dilemma [ J ]. Neural Computation, 1992, 4 (1):1 -58.
  • 10ORR M J. Regularization in the selection of radial basis function centers [J]. Neural Computation. ,1995(7) :606 -623.

二级参考文献21

共引文献146

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部