期刊文献+

金属纳米晶存储器件数据保持能力建模与验证 被引量:1

Modeling and Verifying for Data Retention Capability of Metal Nanocrystal Memory Device
下载PDF
导出
摘要 金属纳米晶存储器件具有低功耗、高速读写特性及较高的可靠性,因此近年来在非易失存储器研究领域备受关注。对比分析讨论了量子限制效应与库仑阻塞效应对金属纳米晶费密能级的影响后,发现库仑阻塞效应会严重削弱器件数据保持能力。在综合考虑金属纳米晶量子限制效应和库仑阻塞效应的基础上,提出了金属纳米晶存储器件数据保持能力分析模型,并通过与相关研究文献的实验数据对比分析,证实了本模型的合理性。 In recent years, in the field of non-volatile memory research, metal nanocrystal memory with low-power, high-speed read and write characteristics and high reliability receives much attention. By comparison on the effects of quantum confinement and Coulomb blockade on Fermi level of metal nanocrystal, it is found that Coulomb blockade could seriously deteriorate the data retention capability of metal nanocrystal memory (MNCM) device. A new data retention model was proposed considering both quantum confinement and Coulomb blockade effect. The model is verified to be reasonable comparing with experimental datum from reference papers.
出处 《半导体技术》 CAS CSCD 北大核心 2008年第3期269-271,274,共4页 Semiconductor Technology
关键词 金属纳米晶 存储器 数据保持能力 量子限制 库仑阻塞 模型 metal nanocrystal memory data retention quantum confinement Coulomb blockade model
  • 相关文献

参考文献9

  • 1GUAN W H, LONG S B, LIU M, et al. Modeling of retention characteristics for metal and semiconductor nanocrystal memories [ J ]. SSE, 2007,51 (5) : 806-811.
  • 2KUBO R. Electronic properties of metallic fine particles [J]. J of the Physical Society of Japan, 1962,17(6) :975-986.
  • 3LIKHAREV K K.Single-electvon devices and their applications [J].Proc of the IEEE,1999,87(4) :606-932.
  • 4STEIMLE R F,MURAHDHAR R,RAO R,et al.Silicon non-volatile memory for embedded memory scaling [ J ]. Microelectronics Reliability, 2007,47 (4-5) : 585-592.
  • 5MADOU M. The Fermi-level and the electrochemical potential 5- appendix[EB/OL]. [2007-10-26] http://mmadou.eng. uci. edu/Classes/Thermodynamics _ Spring2007/Classes/Sappendix. ppt.
  • 6BROWN W D, BREWER J E. Nonvolatile semiconductor memory technology: a comprehensive guide to understanding and using NVSM devices [M]. USA : Wiley-IEEE Press, 1997 : 11-12,23-25.
  • 7PIERRET R F.半导体器件基础[M].北京:电子工业出版社,2004:479.
  • 8LIU Z T, LEE C, NARAYANAN V, et al. Metal nanocrystal memories-part Ⅱ: electrical characteristics [J]. IEEE Trans on ED,2002,49(9) : 1614-1622.
  • 9TAKATA M, KONDOH S, SAKAGUCHI T, et al. New non- volatile memory with extremely high density metal nano-dots [J] .IEEE IEDM Tech Digest,2003:22.5.1-22.5.4.

共引文献1

同被引文献22

  • 1杨红官,周少华,曾云,施毅.双层量子点阵列浮栅结构纳米存储器[J].湖南大学学报(自然科学版),2005,32(6):69-72. 被引量:1
  • 2王久敏,陈坤基,宋捷,余林蔚,吴良才,李伟,黄信凡.氮化硅介质中双层纳米硅薄膜的两级电荷存储[J].物理学报,2006,55(11):6080-6084. 被引量:4
  • 3Tiwari S, Rana F, Hanafi H, et al. A silicon based memory. Appl Phys Lett, 1996, 68:1377-1379.
  • 4Photopoulos P, Nassiopoulou A G, Kouvatsos D N, et al. Photoluminescence from nanocrystalline silicon in Si/SiO2 superlattices. Appl Phys Lett, 2000, 76:3588-3595.
  • 5Waiters R J, Kik P G, Casperson J D, et al. Silicon optical nanocrystal memory. 2004, Appl Phys Lett, 85:2622-2630.
  • 6Muralidhar R, Steimle R F . An embedded silicon nanocrystal nonvolatile memory for the 90 nm technology node operating at 6 V. The IEEE International Conference on Integrated Circuit Design and Technology, 2004.34-35.
  • 7Kimi I, Hans S, Han K, et al. Room temperature single electron effects in a Si nano-crystal memory. IEEE Electronic Device Lett, 1999, 20: 630-631.
  • 8Hanf H, Tiwari S, Khan I. Fast and long retention-time nanocrystal memory. IEEE Trans Electron Device, 1996, 43:1556-1557.
  • 9Shcherbyna L, Torchynska T. Si quantum dot structures and their applications. Physica E, 2013, 51:65-70.
  • 10Prakaipetch P, Kazunori I, Yukiharu U, et al. Effect of SiO2 tunnel oxide thickness on electron tunneling mechanism in Si nanocrystal dots floating-gate memories. Jpn J Appl Phys, 2006, 45:3997-3999.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部