期刊文献+

基于价格冲击函数的经流动性调整VaR模型 被引量:1

Liquidity-adjusted value at risk model based on optimal execution strategy
下载PDF
导出
摘要 提出了一种基于价格冲击函数的VaR(风险值)模型构建思路,以使得这种经流动性调整后的VaR更能完整地计量金融资产的风险.对于给定数量和限定期限的资产变现问题,投资者的风险偏好系数决定了其选择的交易路径是唯一的.由于投资者风险偏好系数和VaR下的置信概率水平具有一一对应关系,可以通过最优路径集下执行成本的期望和标准差组合曲线来获得不同置信概率下,经过流动性调整后的VaR.考虑到实际的资产价格分布的尖峰厚尾性,引入了正态修正因子θ,以改进VaR的风险评估效果. Based on the price impact model, a practical framework for the quantification of the liquidityadjusted value at risk (VaR) was proposed, incorporating the liquidity risk of financial products. For the problem of an investor's position to be closed within a fixed period of time, there exists an optimal trade trajectory, which is decided by the investor's risk-aversion coefficient. Based on the relationship between the risk-aversion coefficient and the confidence level in VaR, liquidity-adjusted VaR at any confidence level was obtained. For many instruments, the distributions of their real market returns are leptokurtic and fat tails, thus a correction factor was introduced to improve the precision of VaR.
出处 《中国科学技术大学学报》 CAS CSCD 北大核心 2008年第2期157-162,共6页 JUSTC
关键词 最优交易策略 流动性调整后的VaR 正态修正因子 optimal execution strategy liquidity-adjusted VaR correction factor for normality
  • 相关文献

参考文献10

  • 1Garbade K D, Siber W L. Structural organization of secondary market: Clearing frequency, dealer activity
  • 2Bangia A. Diebold F X, Scheurmann T, et al. Modeling liquidity risk, with implications for traditional market risk measurement and management [ R ]. Pennsylvania: The Wharton Financial Institutions Center, 1999.
  • 3Giot P, Grammig J. How large is liquidity risk in an automated auction market? [R]. Dufourstrasse, Swiss: University of St Gallen, Department of Economics, 2002.
  • 4Bertsimas D, Lo A W. Optimal control of execution costs[J]. Journal of Financial Markets, 1998, 1: 1-50.
  • 5Almgren R, Chriss N. Optimal execution of portfolio transactions[J]. Journal of Risk, 2000,3 : 5-39.
  • 6Hisata Y, Yamai Y. Research toward the practical application of liquidity risk evaluation methods [J]. Monetary and Economic Studies, 2000,18(2) : 83-128.
  • 7Dubil R. Optimal liquidation of large security holdings in thin markets [R]. Storrs, USA: University of Connecticut, 2002.
  • 8Holthausen R W, Leftwich R W, Mayers D. The effect of large block transactions on security prices:A cross-sectional analysis[J]. J Financial Econ, 1987, 19 (2) : 237-267.
  • 9Holthausen R W, Leftwich R W, Mayers D. Large block transactions, the speed of response, and temporary and permanent stock-price effects [J]. J Financial Economics,1990, 26 : 71-95.
  • 10Perold A. The implement shortfall: Paper Versus reality[J]. Journal of Portfolio Management, 1988, 14:4-9.

同被引文献13

  • 1张金清,梁勇.流动性风险度量:最优出清策略下的La_RVaR模型[J].统计与决策,2007,23(13):40-42. 被引量:4
  • 2Kyle A S. Continuous auctions and insider trading[J]. Econometrica, 1985, 53(6): 1315-1335.
  • 3Harris L E. Liquidity, trading rules, and electronic trading systems[M]. Monograph Series in Finance and Economics, 1990.
  • 4Hisata Y, Yamai Y. Research toward the practical application of liquidity risk evaluation methods[J]. Monetary and Economics Studies, 2000, 18(2): 83-127.
  • 5Dowd K. Beyond value at risk: The new science of risk management[M]. England: John Wiley and Sons Ltd, 1998.
  • 6Shamroukh N. Modeling liquidity risk in VaR models[R]. Working Paper, Algorithmics, 2001.
  • 7武磊. 在VaR模型中嵌入流动性风险:基于流动性调整收益率的方法[C]// 第九届中国经济学年会论文集, 2009.
  • 8Kupiec P. Techniques for verifying the accuracy of risk measurement model[J]. Journal of Derivatives, 1995, 3(2): 73-84.
  • 9张金清,李徐.流动性风险与市场风险的集成度量方法研究[J].系统工程学报,2009,24(2):164-172. 被引量:16
  • 10林辉.条件异方差La-VaR模型及其对金融危机的实证研究[J].统计与决策,2010,26(17):132-135. 被引量:4

引证文献1

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部