期刊文献+

上证综指的概率密度分布和自相关特性的分析 被引量:3

Probability Distribution and Time-Correlation of Shanghai Stock Exchange Composite Index
下载PDF
导出
摘要 分析了2000-2006年上海证券交易所综合股价指数(简称上证指数)的对数增量在不同时间间隔情况下的概率分布密度和自相关函数.发现上证指数的对数增量符合列维非高斯分布,高频指数的对数增量具有大约20 min的时间相关性且在5-15 min之间表现为负相关,对数增量绝对值的自相关函数按幂率分布缓慢衰减.上证指数的总体统计行为与国际成熟股市基本相同,但高频指数的负相关效应和一些定量的差异表明上海股市的投机性较强. The probability distribution and correlation function for the changes of logarithmic of the Shanghai stock exchange composite index were analyzed at different time intervals over the seven year period, from January 2000 to December 2006. It is found that the logarithmic change of the index can be described by the non-Gaussian Levy distribution. The correlation time of the high frequency data is about 20 minutes, where negative correlation is found on intervals between 5 minutes to 15 minutes. The correlation of the absolute value of the logarithmic change of the index decays very slowly with a power law. The overall statistical characteristics of the index of Shanghai exchange is similar to the mature international markets, while the negative correlation and other quantitative difference with other markets indicate that Shanghai market has a higher level of speculation.
出处 《上海交通大学学报》 EI CAS CSCD 北大核心 2008年第1期147-151,共5页 Journal of Shanghai Jiaotong University
关键词 上证综指 概率密度分布 自相关特性 Shanghai stock exchange composite index probability distribution time correlation
  • 相关文献

参考文献7

  • 1Mantegna R N,Stanley H E. An introduction to econophysics, correlations and complexity in finance [M]. Cambridge: Cambridge University Press, 2000: 1--75.
  • 2Bouchaud J P, Poters M. Theory of financial risks From statistical physics to risk management [M]. Cambridge:Cambridge University Press, 2001:1- 90.
  • 3Mantegna R N, Stanley H E. Scaling behaviour in the dynamics of an economic index [J]. Nature, 1995,376 (6) :46-48.
  • 4Qiu T, Zheng B, Ren F, et al. Statistical properties of German Dax and Chinese indices [J]. Physica A, 2007,378:387--398.
  • 5Wu Ming-Chya, Huang Ming-Chang, Yu Hal-Chin, et al. Phase distribution and phase correlation of financial time series[J]. Phy Rev E, 2006,73:016118.
  • 6Mantegna R N, Stanley H E. Stochastic process with ultraslow convergence to a Gaussian: The truncated levy flight[J]. Phy Rev L, 1994,73(22) :2946-- 2949.
  • 7Cont R, Potters M, Bouchaud J P. Scaling in stock market data:Stable laws and beyond [M]. Paris : Science & Finance, Capital Fund Management, 1997 : 1-- 7.

同被引文献31

引证文献3

二级引证文献68

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部