摘要
本文研究了自由群的直积的检验元素,通过对直积的自同态的分解,得到了直积中的元素为检验元素的充分必要条件,改进了O’neill和Turner的结果.此外,构造了两类具体的检验元素.
In this paper, we study test elements in direct products of free groups. By decomposing endomorphism of the direct product, we obtain a necessary and sufficient condition for an element to be a test element in the direct products. This develops the O'neill and Turner' s result on the subject. Moreover,we construct two explicit classes of test elements.
出处
《数学杂志》
CSCD
北大核心
2008年第2期137-140,共4页
Journal of Mathematics
基金
the National Natural Science Foundation of China(10361066)
关键词
自由群
检验元素
独立集
free group
test element
independent set