摘要
本文研究与广义Baouendi-Grushin(B-G)算子相关的二阶退化椭圆方程.利用广义B-G向量场的拟齐性质建立了相关的拟齐度量,证明了与广义B-G算子相关的退化椭圆方程的Hopf型引理,并给出了有关应用及推广.
This paper investigates degenerate elliptic equations of second order concerning the generalized Baouendi-Grushin operators. By using the quasi-homogeneous properties of the generalized Baouendi-Grushin vector fields the Quasi-distance with regard to them is constructed. Then a Hopf type lemma of the degenerate elliptic equations pertinent to the generalized Baouendi-Grushin operators is proved, application and generalization are also given.
出处
《数学杂志》
CSCD
北大核心
2008年第2期165-170,共6页
Journal of Mathematics
基金
国家自然科学基金资助(10371099)
关键词
Hopf型引理
退化椭圆方程
极值原理
Hopf type lemma
degenerate elliptic equations
extremal principle