摘要
分布估计算法是在遗传算法基础上发展起来的一类新型进化优化算法。分布估计算法采用概率图模型表示基因变量之间的连锁关系,以构建优良解集的概率分布模型和采样分布模型来实现迭代优化。详细分析分布估计算法的基本原理,对采用不同概率图模型的分布估计算法进行总结和分析,并针对分布估计算法领域的研究现状,提出仍需解决的主要问题。
The Estimation of Distribution Algorithms (EDAs) is a novel class of evolutionary algorithms which is motivated by the idea of building probabilistic graphical model of promising solutions to represent linkage information between variables in chromosome. Through learning of and sampling from probabilistic graphical model, new population is generated and optimization procedure is repeated until the stopping criteria are met. In this paper, the mechanism of the Estimation of Distribution Algorithms is analyzed. Currently existing EDAs are surveyed and categorized according to the probabilistic model they used, then the strengths and weaknesses and the future perspective of EDAs are concluded.
出处
《石家庄铁路职业技术学院学报》
2008年第1期30-34,共5页
Journal of Shijiazhuang Institute of Railway Technology
基金
河北省科学技术研究与发展基金项目(072135134)
关键词
分布估计算法
遗传算法
概率图模型
Estimation of Distribution Algorithms
Genetic Algorithms
probabilistic graphical model