摘要
针对非线性系统,提出一种将H∞鲁棒跟踪控制器与动态结构自适应神经网络相结合的组合控制方法。文中首先将系统线性化,设计H∞鲁棒跟踪控制器;然后针对系统中仍然存在的高阶非线性和未知不确定性,引入一种动态结构自适应神经网络,以对消非线性和不确定性的影响。这种自适应神经网络的隐层神经元随着跟踪误差的增大而在线增加,使得神经网络能以较少的神经元获得最佳的逼近效果,加快神经网络的运算速度,提高整个系统的动态性能。最后用飞行跟踪控制系统的示例证明本文方法是有效的。
A kind of combinatorial controller using H∞ robust control law and the dynamic structure neural network is presented for a class of complex nonlinear systems and the systems contain the external disturbance or some uncertainties. Firstly, the system is linearized at the working point, and H∞ robust control law is designed by considering the parameter perturbation and external disturbance. Then, the dynamic structure adaptive neural network is adopted to reduce the influence of the nonlinearity and uncertainty existed in the system. This kind of the network can approximate the optimal function by less hidden units. The units are increased with the tracking error increasing, thus the dynamic performance of the whole system is improved. The example shows that the flight tracking method is effective.
出处
《南京航空航天大学学报》
EI
CAS
CSCD
北大核心
2008年第1期76-79,共4页
Journal of Nanjing University of Aeronautics & Astronautics
基金
国家自然科学基金重点(60234010)资助项目
航空科学基金(05E52031)资助项目
关键词
非线性控制系统
鲁棒控制
跟踪控制
自适应神经网络
动态结构神经网络
nonlinear control system
robust control
tracking control
adaptive neural network
dynamic structure neural network