期刊文献+

基于动态结构自适应神经网络的非线性鲁棒跟踪控制 被引量:3

Nonlinear Robust Tracking Control Based on Dynamic Structure Adaptive Neural Network
下载PDF
导出
摘要 针对非线性系统,提出一种将H∞鲁棒跟踪控制器与动态结构自适应神经网络相结合的组合控制方法。文中首先将系统线性化,设计H∞鲁棒跟踪控制器;然后针对系统中仍然存在的高阶非线性和未知不确定性,引入一种动态结构自适应神经网络,以对消非线性和不确定性的影响。这种自适应神经网络的隐层神经元随着跟踪误差的增大而在线增加,使得神经网络能以较少的神经元获得最佳的逼近效果,加快神经网络的运算速度,提高整个系统的动态性能。最后用飞行跟踪控制系统的示例证明本文方法是有效的。 A kind of combinatorial controller using H∞ robust control law and the dynamic structure neural network is presented for a class of complex nonlinear systems and the systems contain the external disturbance or some uncertainties. Firstly, the system is linearized at the working point, and H∞ robust control law is designed by considering the parameter perturbation and external disturbance. Then, the dynamic structure adaptive neural network is adopted to reduce the influence of the nonlinearity and uncertainty existed in the system. This kind of the network can approximate the optimal function by less hidden units. The units are increased with the tracking error increasing, thus the dynamic performance of the whole system is improved. The example shows that the flight tracking method is effective.
作者 张敏 胡寿松
出处 《南京航空航天大学学报》 EI CAS CSCD 北大核心 2008年第1期76-79,共4页 Journal of Nanjing University of Aeronautics & Astronautics
基金 国家自然科学基金重点(60234010)资助项目 航空科学基金(05E52031)资助项目
关键词 非线性控制系统 鲁棒控制 跟踪控制 自适应神经网络 动态结构神经网络 nonlinear control system robust control tracking control adaptive neural network dynamic structure neural network
  • 相关文献

参考文献8

  • 1Li Y, Sundararajan N, Saratchandran P. Neuro-controller design for nonlinear fighter aircraft maneuver using fully tuned RBF networks[J]. Automatica, 2001,37(8) :1293-1301.
  • 2刘亚,胡寿松.基于自适应神经网络的不确定非线性系统的模糊跟踪控制[J].控制理论与应用,2004,21(5):770-775. 被引量:8
  • 3Wu Hansheng. Adaptive robust tracking and model following of uncertain dynamical systems with multiple time delays[J]. IEEE Trans on Automatic Control, 2004,49(4) :611-616.
  • 4Wai Rongjong. Tracking control based on neural network strategy for robot manipulator[J]. Neurocomputing, 2003,51 : 425-445.
  • 5Cheng X P, Patel R V. Neural network based tracking control of a flexible macro-micro manipulator system[J]. Neural Networks, 2003,16(2) :271-286.
  • 6Lu Yingwei, Sundararajan N, Saratchandran P. Performance evaluation of a sequential minimal radial basis function (RBF) neural network learning algorithm[J]. IEEE Trans on Neural Network, 1998,9 (2) :308-318.
  • 7Han Hochoi, Myung Jinchung. Robust observerbased H∞ controller design for linear uncertain time delay systems[J]. Automatica, 1997,33(9):1749 -1752.
  • 8Hovakimyan Naira, Yang Bongjun, Calise Anthony J. Adaptive output feedback control methodology applicable to non-minimum phase nonlinear systems[J]. Automatica, 2006,42(4) :513-522.

二级参考文献7

  • 1TANAKA K,WANG H O.Fuzzy regulators and fuzzy observers:relaxed stability conditions and LMI-based designs [J].IEEE Trans on Fuzzy System,1998,6(2):250-268.
  • 2LEE H J,PARK J B,CHEN G.Robust fuzzy control of nonlinear systern with parametric uncertainties [ J].IEEE Trans on Fuzzy System,2001,9(2):369-379.
  • 3LI J,WANG H O,NIEMANN D,et al.Dynamic parallel distributed compensation for Takagi-Sugeno fuzzy systems:An LMI approach[J].Information Sciences,2000,123(3-4):201-221.
  • 4TSENG C S,CHEN B S,UANG H J.Fuzzy tracking control design for nonlinear dynamic system via T-S fuzzy model [ J].IEEE Trans on Fuzzy System,2001,9(3):381-392.
  • 5WANG H O,TANAKA K,GRIFFIN M F.An approach to fuzzy control of nonlinear systems:Stability and design issues [J].IEEE Trans on Fuzzy System,1996,4(1):14-23.
  • 6GU Y,WANG H O,TANAKA K.Fuzzy control of nonlinear timedelay systems:stability and design issues [C]//2001 American Control Conference.Arlington,VA:[ s.n.],2001:4771-4777.
  • 7GE S S,WANG C.Direct adaptive NN control of a class nonlinear system [J].IEEE Trans on Neural Networks,2002,13(1):214-221.

共引文献7

同被引文献42

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部