期刊文献+

未知环境下移动机器人同步地图创建与定位研究进展 被引量:27

A review of simultaneous localization and map building algorithms for mobile robots in unknown environment
下载PDF
导出
摘要 移动机器人同步地图创建与定位(SLAM)是移动机器人的核心研究课题.本文对SLAM的最新研究进展和关键技术进行了综述;并从地图创建模型、计算复杂度和算法鲁棒性等方面对现有方法进行了对比分析.最后总结分析了SLAM研究存在的难题,探讨了今后的发展方向. Simultaneous localization and mapping (SLAM) algorithm for mobile robots is a key problem in the field of robotics. The latest progress of SLAM algorithms is surveyed, and the key techniques adopted. Various existing methods were analyzed and compared in details of map-building model, computation complexity, robustness and so on. Finally, the key problems and future research trend of SLAM approaches are presented.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第1期57-65,共9页 Control Theory & Applications
基金 国家自然科学基金资助项目(60775047) 国家863计划资助项目(2007AA04Z244) 湖南大学优秀博士论文创新基金资助项目(521218006)
关键词 移动机器人地图创建 移动机器人定位 卡尔曼滤波器 EM算法 粒子滤波器 mobile robot map-building mobile robot localization Kalman filter EM algorithm particle filters
  • 相关文献

参考文献76

二级参考文献145

  • 1[1]Jensfelt P, Cgrustebseb H. Laser based position acpuisition and tracking in an indoor environment[A]. Proceedings of IEEE International Symposium on Robotics and Automation[C]. Mexico: 1998,l. 331-338.
  • 2[2]Davison A J, Nobuyuki K. 3D simultaneous localization and map building using active vision for a robot moving on undulating terrain[A]. Proceedings of the IEEE International Conference on Computer Vision and Recognization[C]. Hawail: 2001,1. 384-391 .
  • 3[3]Se S, Lowe D, Little J. Vision-based mobile robot localization and mapping using scale-invariant features[A]. Proceedings of the IEEE International Conference on Robotics and Automation[C]. Korea: 2001. 2051-2058.
  • 4[4]Leonard J, Durrant-Whyte H F. Dynamic map building for an autonomous mobile robot[J]. International Journal of Robotics Research, 1992, 11(4): 286-298.
  • 5[5]Moutarlier P, Chatila R. Stochastic multisensory data fusion for mobile robot localization and environmental modeling[A]. Proceedings of the International Symposium on Robotics Research[C]. 1990. 85-94.
  • 6[6]Montemerlo M, Thrun S. FastSLAM: a factored solution to the simultaneous localization and mapping problem[A]. Proceedings of the Eighteenth National Conference on Artificial Intelligence[C]. Edmonton: AAAI Press, 2002. 593-598.
  • 7[7]Hu S, Hu D D, Gu O. Landmark-based navigation of mobile robots in manufacturing[A]. IEEE International Conference on Emerging Technologies & Factory Automatin[C]. Spain: 1999. 18-21.
  • 8[8]Leonard J, Durrant-White H F. Directed Sonar Sensing for Mobile Robot Navigation[M]. Boston: Kluwer Academic Publishers, 1992. 208-216.
  • 9[9]Thrun S. Particle filters in robotics[A]. Proceedings of Uncertainty in AI (UAI- 2002)[C]. San Francisco: Morgan Kaufmann Publishers, 2002.511-518.
  • 10[10]Feder H J S. Simultantous stochastic mapping and localization[D]. USA: MIT, 2001.

共引文献207

同被引文献342

引证文献27

二级引证文献143

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部