期刊文献+

具有深度自适应估计的视觉伺服优化 被引量:1

Optimization for visual servoing with depth adaptation
下载PDF
导出
摘要 在手眼机器人视觉伺服中,如何确定机器人末端摄像机移动的速度和对物体的深度进行有效的估计还没有较好的解决方法.本文采用一般模型法,通过求解最优化控制问题来设计摄像机的速度,同时,利用物体初始及期望位置的深度估计值,提出了一种自适应估计的算法对物体的深度进行估计,给出了深度变化趋势,实现了基于图像的定位控制.该方法能够使机器人在工作空间范围内从任一初始位置出发到达期望位置,实现了系统的全局渐近稳定且不需要物体的几何模型及深度的精确值.最后给出的仿真实例表明了本方法的有效性. How to design the moving speed of a camera and effectively estimate the depth of the observed object have not been solved properly for visual servoing with eye-in-hand configuration. The GMC(generic model control) is introduced to confirm the output trajectory of the system, and an optimization controller is designed for controlling the moving speed of the camera. In the case of unknown object depth, an adaptive update law is proposed to estimate the depth of selected features based on the approximate depth values of these features at the initial and desired positions. Under the driving of the controller, the camera can reach any desired location from any initial position in the robot workspace while the system is globally asymptotically stable. The method does not need any knowledge of a three-dimensional model of the object. Finally, a simulation is carried out to show its validity.
出处 《控制理论与应用》 EI CAS CSCD 北大核心 2008年第1期66-70,共5页 Control Theory & Applications
基金 国家自然科学基金资助项目(50575193)
关键词 视觉伺服 全局稳定性 最优化控制 自适应深度估计 visual servoing global stability optimization control depth adaptation
  • 相关文献

参考文献7

  • 1HUTCHINSON S, HAGER G, CORKE P. A tutorial on visual servo control[J]. IEEE Trans on Robotics and Automation, 1996, 12(10):651 - 670.
  • 2WILSON W, HULLS C, BELL G. Relative end-effector control using Cartesian position-based visual servoing[J]. IEEE Trans on Robotics and Automation, 1996, 12(10): 684- 696.
  • 3FEDDEMA J, MITCHELL O. Vision-guided servoing with feature-based trajectory generation[J]. IEEE Trans on Robotics and Automation, 1989, 5(10): 691 - 700.
  • 4MALIS E, CHAUMETTE F, BOUDET S. 2 1/2-D visual servoing[J]. IEEE Trans on Robotics Automation, 1999, 15(4): 238 - 250.
  • 5GRAZIANO C, ANTONIO V. Visual servoing for large camera displacements[J]. IEEE Trans on Robotics Automation, 2004, 20(8): 724 - 735.
  • 6HASHIMOTO K, KIMOTO T, EBINE T, et al. Manipulator control with image based visual servoing[C]//Proc of Int Conf on Robotics and Automation. Sacramento, California: IEEE Press, 1991: 2267- 2272.
  • 7李惠光,武波,李国友,等.Delta算予控制及其鲁棒控制理论基础[M].北京:国防工业出版社,2005.

同被引文献8

  • 1肖本贤,张松灿,刘海霞,赵明阳,王群京.基于动力学系统的非完整移动机器人的跟踪控制[J].系统仿真学报,2006,18(5):1263-1266. 被引量:16
  • 2Ohya A, Kosaka A K. Vision-based Navigationby a Mobile Robot with Obstacle Using Single-camera and Ultrasonic Sensing [ J ]. IEEE Transac-tions on Robotics and Automation, 1998, 14 ( 6 ) : 969-978.
  • 3Torii T ,Kitade S T T. Crop Row Tracking by an Autonomous Vehi- cle Using Machine Vision [ J ]. JSAM, 2000,62 ( 2):41-48.
  • 4S Hutchinson,G Hager,P Corke. A Tutorial on Visual Servo Con- trol[J]. IEEE Transaction on Robotics and Automation (S0882- 4967) ,1996,12(5) :51-670.
  • 5K.Hashimoto, Kimoto, "Ebine Kimunl." K. T. T. H. Ma2nipulator control with image based visual servoing [ J ]. In Proc. IEEE IntlConflRobotics and Automation. Sacra2 mento, California, 1991,13( 1 ) :2267-22721.
  • 6Suh IH, Kim TW. Visual Servoing Algorithm Using Fuzzy Logics and Fuzzy-neural Networks[ J ]. IEEE International Conference on Robotics and Automation. 1996. 3605-3612.
  • 7杨国田,吴章宪,曾雅文,宋鹏川,刘向杰.控制量离散的轮式小车轨迹跟踪研究[J].控制工程,2009,16(6):713-716. 被引量:1
  • 8曹洋,项龙江,徐心和.基于全局视觉的轮式移动机器人轨迹跟踪控制[J].机器人,2004,26(1):78-82. 被引量:9

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部