期刊文献+

说话人语音特征子空间分离及识别应用

Separation of speech feature subspace and its application to speaker identification
下载PDF
导出
摘要 本文依据主元分析原理从语音特征观察空间分离说话人语音特征子空间,对输入语音特征矢量与子空间的距离测度进行了定义,并对基于特征子空间的说话人识别性能进行了分析。说话人语音训练样本提取特征后在语音特征观察空间形成具有一定散度的分布,根据主元分析原理和分布散度提取主要散度本征向量作为基底构成说话人语音特征子空间,并通过测试语音特征矢量与子空间的距离测度进行模式匹配。实验结果表明,特征子空间方法对说话人识别是有效的,特别是在小于3秒的短时测试语音下能够得到较高的识别率。 A new method for separation of speech feature subspace from observation space is proposed based on principal component analysis, and the performance of its application to speaker identification is evaluated. For every speaker, speech features extracted from training samples become a distribution with specific statistical properties such as mean and variance in observation space. Instead of statistical description, a feature subspace with the base of some significant eigen vector extracted from covariance matrix is constructed to describe speech feature distribution of speaker. Distance metrics for measuring distance between input feature vector and subspace are also proposed for pattern matching. Experiments on speaker identification performance analysis demonstrate effectiveness of subspace method, especially for short time test speech with length less than or equal to 3 seconds.
出处 《电路与系统学报》 CSCD 北大核心 2008年第1期7-11,共5页 Journal of Circuits and Systems
基金 江苏省高校自然科学基金资助重点项目(04KJA510133)
关键词 说话人识别 子空间 主元分析 文本无关 speaker recognition subspace PCA text independent
  • 相关文献

参考文献9

  • 1Campbell J P. Speaker Recognition: A tutorial [J]. IEEE Proc., 1997, 85(9): 1436-1462.
  • 2Chen C T, Chen C. Efficient Genetic algorithm of Codebook Design for Text-Independent Speaker Recognition [J]. IEICE, 2002, E85-A(11): 2529-2531.
  • 3Reynolds D A, Rose R C. Robust text-independent speaker identification using Gaussian Mixture Speaker Models [J]. IEEE Speech and Audia, 1995, 3(1): 72-83.
  • 4侯风雷,王炳锡.基于支持向量机的说话人辨认研究[J].通信学报,2002,23(6):61-67. 被引量:17
  • 5岳喜才,伍晓宇,郑崇勋.用神经阵列网络进行文本无关的说话人识别[J].声学学报,2000,25(3):230-234. 被引量:14
  • 6俞一彪,王朔中.文本无关说话人识别的全特征矢量集模型及互信息评估方法[J].声学学报,2005,30(6):536-541. 被引量:7
  • 7Ariki Y, Tagashira S, Nishijima M. Speaker recognition and speaker normalization by projection to speaker subspace [A]. Proc. ICASSP [C]. 1996, 1: 319-322.
  • 8Nishida M, Ariki Y. Speaker recognition by projecting to speaker space with less phonetic information [J]. IEICE, 2002, J85-DII(4): 554-562.
  • 9Shaughnessy D O. Speech Communications-Human and Machine [M]. IEEE Press, NJ., 2000. 378-383.

二级参考文献19

  • 1俞一彪,王朔中.基于互信息匹配模型的说话人识别[J].声学学报,2004,29(5):462-466. 被引量:8
  • 2Chen C T, Chen C. Efficient genetic algorithm of codebook design for text-independent speaker recognition. IEICE,2002, E85-A(11): 2529-2531.
  • 3Lee Y -T. Information-theoretic distortion measures for speech recognition. IEEE-ASSP, 1991; 39:330-335.
  • 4Okawa S, Kobayashi T, Shirai K. Automatic training of phoneme dictionary based on mutual information criterion.ICASSP, 1994:241-244.
  • 5Bahl L R, Brown P F. Maximum mutual information estimation of hidden Markov model parameters for speech recognition. ICASSP, 1986:49-52.
  • 6Shaughnessy D O. Speech communications-human and machine. IEEE Press, NJ., 2000:378-383.
  • 7Naik J. Speaker verification: A tutorial. IEEE Commun.Mag., 1990; 28(1): 42-48.
  • 8Campbell J P. Speaker recognition: A tutorial. IEEE Proc., 1997; 85(9): 1436-1462.
  • 9Reynolds D A, Rose R C. Robust text-independent speaker identification using Gaussian Mixture Speaker Models.IEEE Speech and Audio, 1995; 3(1): 72-83.
  • 10Tanprasert C, Achariyakulporn V. Comparative study of GMM, DTW and ANN on Thai speaker identification system. In: Proc. ICSLP, 2000 (Paper No.00718).

共引文献32

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部