期刊文献+

两种常见接地极电流分布的探讨 被引量:22

Current Distribution of Two Kinds Grounding Electrode
下载PDF
导出
摘要 针对目前接地极电流分布计算方法较为复杂等的不足,从电流场和静电场的等效性出发,探讨了水平直线和并联垂直型2种常见形状接地极导体中电流分布不均匀的问题,提出了计算电流分布的一种简化方法。根据电流场和静电场的等效性,将接地极等效为有限长的线电荷模型,根据力学平衡计算了模型上的电荷分布,由此得到入地电流沿接地极轴线的分布规律。结果表明,对于水平直线型接地极端部电流是中间部位的数倍,倍数随接地极长度的增加而增大;对并联的垂直接地极,电流分布的不均匀度随接地极根数的增加而增大,导体的利用率也随之降低。 Based on the equivalence of steady current field and static electric field, for the two common forms of horizontal linear grounding electrode and parallel vertical grounding electrode, a new method is presented to calculate the non-uniform of current distribution in two kinds grounding electrode, and the rule of current distribution in grounding electrode is discussed. The grounding electrode will be equivalent to a very limited long line point charge model, according to the electric power balance of the point charge model, the distribution rule of point charge model in grounding electrode axis is obtained firstly. Accordingly, the current distribution rule in grounding electrode axis based on the equivalence of steady current field and static electric field is obtained immediately. The calculated results show that the current distribution density at both ends of horizontal linear grounding electrode could be several times of the current distribution density in the middle. It is found that the non-uniformity will become worse with the increasing of grounding electrode length, and the non-uniformity will become worse with the increasing of parallel vertical grounding electrode numbers. At the same time, the utilization rate of grounding electrode will decrease.
出处 《高电压技术》 EI CAS CSCD 北大核心 2008年第2期239-242,共4页 High Voltage Engineering
基金 "十一五"国家科技支撑计划重大项目(2006BAA02A18)~~
关键词 接地极 电流场 静电场 线电荷模型 电荷分布 电流分布 grounding electrode current field static electric field line charge model electric charge distribution current distribution
  • 相关文献

参考文献15

二级参考文献22

  • 1樊德森,王元勋.开域电磁场问题的有限元解法─第二类全域数值边界条件及其应用[J].电子学报,1994,22(3):18-22. 被引量:3
  • 2潘文霞 陈慈萱.接地技术研究中双层土壤的实验室模拟[J].中国电机工程学报,1994,14(5):70-70.
  • 3[1]Verma R, Mukhedkar D. Fundamental Considerations and Impulse Impedance of Grounding Grids[J]. IEEE transactions on Power Apparatus and Systems, 1981,100:1023~1030.
  • 4[2]Ramamoorty, Narayanan , Parameswaran S, Mukhedlar D. Transient Performance of Grounding Grids[J]. IEEE Transactions on Power Delivery, 1989,4: 2053~2059.
  • 5[3]Velazquez R, Mukhedkar D. Analytical Modeling of Grounding Electrodes Transient Behavior [J]. IEEE Transactions on Power Apparatus and System, 1984,PAS-103(6): 1314~1322.
  • 6[4]Otero A F, Cidras J, Garrido C. Frequencyanalysis of Grounding Systems [A]. Harmonics and Quality of Power Proceedings. Proceedings 8th International Conference[C]. 1998. 348~353.
  • 7[5]Otero A. F, Cidras J, Alamo J L. Frequency-Dependent Grounding System Calculation by Means of a Conventional Nodal Analysis Technique. IEEE Transactions on Power Delivery, 1999 , 14(3): 873~878.
  • 8[6]Liu Yaqing,Mihael Zitnik,Rajeev Thottappillil. An Improved Transmission-Line Model of Grounding System [J]. IEEE Transactions on Electromagnetic Compatibility,2001,43(3) :348~355.
  • 9[7]Carl T A, Johnk. Engineering Electromagnetic Fields and Waves[M]. John Wiley & Sons Inc, 1975.
  • 10[8]Nathan Ida, Joao P A,Bastos. Electromagnetics and Calculation of Fields[M]. New York,Springer-Verlag Inc,1997.

共引文献85

同被引文献214

引证文献22

二级引证文献222

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部