期刊文献+

气体火花开关高温气体冷却的三维模拟 被引量:2

3-D Simulation of High Temperature Gas Decay of Gas Spark Gap
下载PDF
导出
摘要 高温气体的冷却是影响气体火花开关重复运行的主要因素。为解决高温气体冷却研究采用一维或二维模型且不考虑气体导热系数、定压比热、粘性系数随温度变化的影响引起的计算不精确,三维数值模拟及理论分析了气体开关导通后开关通道内的高温气体冷却。结果表明,气体导热系数越大、定压比热越小、粘性系数越小、气体冷却速度越快;用得出的上述参数随温度变化的拟合公式对氮气、氢气气体开关中高温气体冷却三维模拟证明了氢气的冷却速度明显好于氮气。 To improve the repetition rate of the spark gap, the high temperature gas decay is studied. A 3-D model is established for simulation of temperature decay of gas with high temperature. According to continuity equation, momentum equation, energy conservation equation, ideal gas state equation and using finite element analysis method, the simulation resuJts and theory analysis show that gas with higher heat transfer coefficient, smaller specific capacity at constant pressure and smaller dynamic viscosity has the faster temperature decay velocity. The adaptive equations of heat transfer coefficient, specific capacity, dynamic viscosity varied with temperature were given; Using these equations, simulation of high temperature gas decay after the spark gap is closed for nitrogen and hydrogen is done, and the results show that the velocity of temperature decay of hydrogen is faster than nitrogen's. For hydrogen, the peak temperature of high temperature gas can be cooled to 1 000 K in about 7 ms, while it needs about 27 ms for nitrogen to be cooled to the same temperature. Therefore, hydrogen is a better gas dielectric for repetitive gas spark gap.
出处 《高电压技术》 EI CAS CSCD 北大核心 2008年第2期382-384,396,共4页 High Voltage Engineering
基金 国家自然科学基金(10675168)~~
关键词 气体火花开关 气体冷却 三维数值模拟 重复频率 氢气开关 绝缘恢复 gas spark switch temperature decay 3 D simulation pulse repetition hydrogen switch insulation recovery
  • 相关文献

参考文献14

  • 1Koutsoubis J M, MacGregor S J. Effect of gas type on high repetition rate performance of a reiggered, corona stabilised switch [J]. IEEETranson D&EI, 2003, 10(2): 245-255.
  • 2Macgregor S J, Tumbull S M, Tuema F A. A high prf pulsed power experimental facility [C]. Tenth IEEE International Pulsed Power Conference. Strathclyde Univ, Glasgow, UK, 1994: 1377-1382.
  • 3Lehr J M, Abdalla M D, Burger J W, et al. Design and development of a 1 MW, compact, self break switch for high repetition rate operation[C]. 12th IEEE International Pulsed Power Conference. Kirtland AFB, NM, USA, 1999: 1199-1202.
  • 4Macgregor S J, Turnbull S M, Tuema F A, et al. Enhanced spark gap switch recovery using nonlinear V/p curves[J]. IEEE Transactions on Plasma Science, 1995, 23(4): 798-804.
  • 5Okamoto M, Ishikawa M, Suxuki K, et al. Computer simulation of phenomena associated with hot gas in puffer-type gas circuit breaker[J]. IEEE Trans on PWRD, 1991, 6(2): 833-839.
  • 6Tsuruta K, Ebara H. Modeling of gas temperature decay after arc discharge in small air gaps[J]. IEEE Transactions on Electrical Insulation, 1992, 27(3): 451-456.
  • 7Kushner M J, Kimura W D, Byron. Arc resistance of laser-triggered spark gaps[J]. Journal of Applied Physics, 1985, 58(5) :1744-1751.
  • 8Gene Barnes. Effective resistance in hydrogen arcs triggered by an explode wire[C]. IEEE International Pulsed Power Conference. Monterey, CA, 1989.
  • 9Ragaller K, Egli W, Brand K P. Dielectric recovery of axially blown SF6-arc after current zero: part Ⅱ theoretical investigations[J]. IEEE Trans on Plasma Science, 1982, 10(2): 154- 172.
  • 10[苏]Г.А.米夏兹..大功率毫微秒脉冲的产生[M]..北京:原子能出版社,,1982....

同被引文献29

  • 1许日,宁辉,邱爱慈,莫凡,邱毓昌.重复率气体火花开关绝缘恢复特性[J].强激光与粒子束,1996,8(4):518-522. 被引量:24
  • 2刘金亮,殷毅,杨建华,陈冬群,冯加怀,周相,叶兵.高功率多脉冲调制器研究[J].强激光与粒子束,2006,18(11):1927-1930. 被引量:4
  • 3Verson L, Brion J C. Experimental study of repetitive Marx generator[C]//14th IEEE International Pulsed Power Conference. Dallas, Texas, USA:[s. n. ], 2003: 1054-1057.
  • 4Lancaster K T, Clark R S, Buttram M T. A compact, repetitive, 6.5 kilojoule Marx generator power modulator symposium [C]//IEEE Conference Record of the 1988 Eighteenth. Albuquerque, NM, USA: IEEE, 1988: 48-51.
  • 5Lehr J M, Abdalla M D, Burger J W, et al. Design and development of a 1 MV, compact, self break switch for high repetition rate operation[C]//12th IEEE International Pulsed Power Conference. Kirtland AFB, NM, USA, [s. n. ], 1999 : 1199-1202.
  • 6Tsuruta Koichi, Takahashi Isao, Kanzaki Yuetsu, et al. Experimental study of the voltage recovery characteristics of small air gaps[J]. IEEE Transactions on Plasma Science, 1989, 17(3): 560-564.
  • 7Koutsoubis J M, MacGregor S J. Effect of gas type on high repetition rate performance of a triggered, corona stabilised switch [J]. IEEE Transactions on Dielectrics and Electrical Insulation, 2003, 10(2): 245-255.
  • 8Macgregor S J, Turnbull S M, Tuema F A. A high prf pulsed power experimental facility [C]// Tenth IEEE International Pulsed Power Conference. Glasgow, UK : [s. n.], 1995 : 1377- 1382.
  • 9Forrest J Agee, Carl E Baum, William D. Prather ultra-wide band transmitter research[J]. IEEE Transactions on Electron Devices, 1998, 26(3): 860-872.
  • 10Frost C A, Martin T H, Patterson P E, et al. Ultrafast gas switching experiments[C]//Pulsed Power Conference. Albu querque, New Mexico, USA:[s.n.], 1993: 491-494.

引证文献2

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部