期刊文献+

疲劳过程中生热机理的实验探讨 被引量:7

Experimental Study on Heat Production Mechanism during Fatigue Process
下载PDF
导出
摘要 传统的疲劳试验方法确定材料的疲劳极限时试验周期长、需要试件多,故高试验成本成为疲劳试验中一个难以解决的问题。文中利用具有准确、快速、便捷、低成本等优点的热像法测定了多种载荷工况下Q235钢的疲劳极限,并对不同的黏或/和塑性效应主导的生热机制进行了探讨。材料疲劳过程中,疲劳极限之下的载荷引起的温度波动来源于热弹性效应,温升来源于材料的非弹、塑性效应(如黏性效应);而疲劳极限之上的载荷引起塑性功累计,导致疲劳损伤产生,使得温升机制出现转折。通过对试验数据的分析,求出了材料的黏性系数,给出了利用塑性能耗的起点确定材料疲劳极限的方法。 Traditional fatigue-testing method to determinate material's fatigue limit has defects such as long test period and a great quantity of requisite specimens, so high testing cost has become a difficult problem in material fatigue test. In this paper, thermography method, which has merits such as high accuracy, short test time, convenience and low cost is applied to determine the fatigue limit of Q235 steel under several load-cases, and the heat generation mechanism resulted from viscosity or/and plasticity effect during the fatigue was explored. During the process of material fatigue, temperature fluctuation appeared when loading is lower than fatigue limit results from thermo-elastic effect, and temperature rising comes from non-elasticity and non-plasticity effects (such as viscousness). On the other hand, the cumulated plasticity work produced when loading is above limit leads to the fatigue damage and changes the heat generation mechanism. After experimental data processing, material's viscousness coefficient was acquired and a new method to determine fatigue limit by the threshold of plasticity energy dissipation was given.
出处 《实验力学》 CSCD 北大核心 2008年第1期1-8,共8页 Journal of Experimental Mechanics
关键词 疲劳试验 热像法 黏性效应 塑性能耗 fatigue test thermography method viscose effect plastic energy dissipation
  • 相关文献

参考文献11

  • 1Charles J A, Appl F J, Francis J E. Using the Scanning Infrared Camera in Experimental Fatigue Studies[C]. 1975 SESA Spring Meeting to be held in Chicago, on May 11-16,1975.
  • 2Reifsnider K L, Williams R S. Determination of Fatigue related Heat Emission in Composite Materials[C]. 1973 SESA Fall Meeting held in Indianapolis, on October 16-19,1973.
  • 3Fargione G, Geraci A, La Rosa G, et al. Rapid determination of the fatigue curve by thermographic method[J]. International Journal of Fatigue, 2002,24 : 11 - 19.
  • 4La Rosa G, Risitano A. Thermographic methodology for rapid determination of the fatigue limit of materials and mechanical components[J]. International Journal of Fatigue, 2000, 22:65-73.
  • 5Fargione G, Geraci A, La Rosa G, et al. Rapid determination of the fatigue curve by thermographic method[J]. International Journal of Fatigue, 2002, 24: 11-19.
  • 6Minh Phong Luong. Fatigue limit evaluation of metals using an infrared thermographic technique[J]. Mechanics of Materials, 1998, 28:155-163.
  • 7姚国文,黄培彦,牛鹏志,郑小红.循环载荷下碳纤维薄板增强RC梁的疲劳性能试验研究[J].实验力学,2005,20(3):349-353. 被引量:9
  • 8朱正宇,何国球,张卫华,刘晓山.非比例载荷下多轴疲劳微观机理的研究进展[J].同济大学学报(自然科学版),2006,34(11):1510-1514. 被引量:7
  • 9于海生,丰崇友,王兴国,舒卡耶夫谢.尼..多轴低周载荷下钛合金BT9疲劳损伤的微观机理[J].材料科学与工程学报,2006,24(2):282-285. 被引量:4
  • 10姚磊江,童小燕,吕胜利.低周疲劳过程中的非弹性响应和热响应[J].西北工业大学学报,2003,21(1):83-86. 被引量:9

二级参考文献34

  • 1孙新军,白秉哲,顾家林,陈南平.Mechanical Behaviors and Microstructural Characteristics of TC11 Alloy during Hot Deformation[J].Rare Metals,2000,19(2):101-109. 被引量:4
  • 2H.F. Huang and S.L. Liu Laboratory of Material Mechanical Properties, Beijing Institute of Aeronautical Materials (BIAM), Beijing 100095, China.CRACK GROWTH BEHAVIOR IN TITANIUM ALLOY TC11 AT ROOM AND HIGH TEMPERATURES[J].Acta Metallurgica Sinica(English Letters),1999,12(1):80-84. 被引量:3
  • 3姚国文,黄培彦,郑小红,赵琛,陈翠峰.纤维薄板厚度对增强RC梁承载能力的影响[J].暨南大学学报(自然科学与医学版),2005,26(1):120-122. 被引量:3
  • 4[1]Gross T S,Weertman J. Calorimetric Measurement of the Plastic Work of Fatigue Crack Propagation in 4140 Steel. Trans Metallurgical A,1982,13A(12): 2165~2172
  • 5[2]Halford GR. The Energy Required for Fatigue. J Materials,1966,1(1): 3~16
  • 6[3]Tong XY,Wang D J,Xu H. Investigation of Cyclic Hysteresis Energy in Fatigue Failure Process. Int J Fatigue,1989,11(5): 353~356
  • 7SureshS.材料的疲劳[M].北京:国防工业出版社,1999.237.
  • 8Cailletaud G,Doquet V,Pineau A.Cyclic multiaxial behavior of an austenitic stainless steel:microstructural observations and macromechanical modeling[M]∥Fatigue Under Biaxial and Multiaxial Loading.London:ESIS Publication,1991:131-149.
  • 9YANG Jihong,LI Yong,ZHANG Xinping,et al.Evolution of persistent slip bands and stimulation of its stress field in a fatigued copper single crystal[J].Materials Science and Engineering A,2003,345:164.
  • 10Chen X,Gao Q,Sun X F.Low-cycle fatigue under non-proportional loading[J].Fatigue Frac Engng Mater Struct,1996,19(7):839.

共引文献26

同被引文献58

引证文献7

二级引证文献36

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部