期刊文献+

一种基于投影和树的闭合频繁模式算法

An Algorithm for Mining Closed Frequent Patterns Based on Projection Sum Tree
原文传递
导出
摘要 提出一种基于投影和树的闭合频繁模式挖掘的算法.此算法利用一种数据结构:投影和树,把事务投影到这棵前缀树上,它除了可以从空间上紧凑地存放频繁模式外,还建立了层的概念,挖掘时充分利用已有的计算结果,不重复计算.另外挖掘时,算法只对投影和树进行一次遍历,不需要进行耗时的I/O操作,也不需要递归地建立条件FP树而消耗大量的CPU计算资源.实验结果表明在稠密集上,其效率较高. In this paper, a new algorithm for mining closed frequent patterns is presented based on a projection sum frequent items tree. This algorithm projects the transaction base into a projection sum frequent items tree and stores the patterns compactly with the help of tiers. When mining, it can make full use of the existing computational result which has been done without repeat computation. It traverses the projection tree only once and does not need to generate the conditional FP trees dynamically and recursively and it avoids much time-consuming I/O. The experiment shows that it has a high efficiency on dense datasets.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期6-11,共6页 Pattern Recognition and Artificial Intelligence
基金 国家自然科学基金资助项目(No.60473070)
关键词 闭合频繁模式 数据挖掘 投影和树 Closed Frequent Pattern, Data Mining, Projection Sum Tree
  • 相关文献

参考文献9

  • 1Stumme G, Taouil R, Bastide Y, et al. Computing Iceberg Concept Lattices with Titanic. Data and Knowledge Engineering, 2002, 42(2): 189-222.
  • 2Boulicaut J F, Bykowski A, Rigotti C. Free-Sets: A Condensed Representation of Boolean Data for the Approximation of Frequency Queries. Data Mining and Knowledge Discovery, 2003, 7(1):5-22.
  • 3Pasquier N. Bastide Y, Taouil R, et al. Efficient Mining of Association Rules Using Closed hemset Lattices. Information Sys tems, 1999, 24(1): 25-46.
  • 4Pasquier N, Bastide Y, Touil R, et al. Discovering Frequent Closed Itemsets for Association Rules Beeri C, Buneman P,eds. Proc of the 7th International Conference on Database Theory. Jerusalem, Israel, 1999:398-416.
  • 5Pei Jian, Han Jiawei, Mao Runying. Closet: An Efficient Algorithm for Mining Frequent Closed Itemsets Proc of the ACM SIGMOD International Workshop on Data Mining and Knowl edge Discovery. Dallas. USA, 2000:21-30.
  • 6Han Jiawei, Pei Jian, Yin Yiwen. Mining Frequent Patterns without Candidate Generation Proc of the ACM SIGMOD International Conference on Management of Data. Dallas, USA, 2000:1-12.
  • 7Wang Jianyong, Han Jiawei, Pei Jian. Closet+ : Searching for the Best Strategies for Mining Frequent Closed Itemsets Proc of the 9th ACM SIGKI)D International Conference on Knowl edge Discovery and Data Mining. Washington, USA, 2003: 236-245.
  • 8Grahne G, Zhu Jianfen. Efficiently Using Prefix-Trees in Mining Frequent hemsets Goethals B, Zaki M J, eds. Proc of the Ist IEEE ICDM Workshop on Frequent hemset Mining Implementations. Melbourne, USA, 2008.- 135-143.
  • 9Zaki M J. Hsiao C J. CHARM: An Efficient Algorithm for Closed hemset Mining Proc of the 2nd SIAM International Conference on Data Mining. Arlington, USA, 2002:34-43.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部