摘要
提出一种基于投影和树的闭合频繁模式挖掘的算法.此算法利用一种数据结构:投影和树,把事务投影到这棵前缀树上,它除了可以从空间上紧凑地存放频繁模式外,还建立了层的概念,挖掘时充分利用已有的计算结果,不重复计算.另外挖掘时,算法只对投影和树进行一次遍历,不需要进行耗时的I/O操作,也不需要递归地建立条件FP树而消耗大量的CPU计算资源.实验结果表明在稠密集上,其效率较高.
In this paper, a new algorithm for mining closed frequent patterns is presented based on a projection sum frequent items tree. This algorithm projects the transaction base into a projection sum frequent items tree and stores the patterns compactly with the help of tiers. When mining, it can make full use of the existing computational result which has been done without repeat computation. It traverses the projection tree only once and does not need to generate the conditional FP trees dynamically and recursively and it avoids much time-consuming I/O. The experiment shows that it has a high efficiency on dense datasets.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2008年第1期6-11,共6页
Pattern Recognition and Artificial Intelligence
基金
国家自然科学基金资助项目(No.60473070)
关键词
闭合频繁模式
数据挖掘
投影和树
Closed Frequent Pattern, Data Mining, Projection Sum Tree