摘要
针对信号分带优化的问题,提出功率谱加权熵最大分带分析方法.该方法在限定分带数目的条件下.以加权熵最大为优化标准,获得信号在频域的信息量最大的分带边界.在此基础上.建立功率谱加权熵最大分析模型,同时给出其实现算法.进而,依据功率谱加权熵最大的原则,提出功率谱加权熵最大分带倒谱系数分类特征,设计以线性分类距离为优化标准的权系数学习算法.并在地面目标识别的应用中取得较好效果.
Power spectral sub-band analysis with the criterion of maximum weighting entropy is derived as a new signal analysis method in this paper. The maximum information is obtained by optimizing the sub-bands allocated in frequency. Based on this method, a algorithm of feature extraction for classification, maximum weighting entropy cepstrum coefficients (MECC), is proposed and applied to ground vehicle recognition system. Experimental results show that MECC has better classification performance than the traditional methods.
出处
《模式识别与人工智能》
EI
CSCD
北大核心
2008年第1期42-48,共7页
Pattern Recognition and Artificial Intelligence
关键词
加权熵最大
分带分析
遗传算法
Maximum Weighting Entropy, Sub-Band Analysis, Genetic Algorithm