期刊文献+

加权熵最大优化分带分析方法及在模式分类中的应用

Sub-Band Optimization with Criterion of Maximum Weighting Entropy and Its Application in Pattern Classification
原文传递
导出
摘要 针对信号分带优化的问题,提出功率谱加权熵最大分带分析方法.该方法在限定分带数目的条件下.以加权熵最大为优化标准,获得信号在频域的信息量最大的分带边界.在此基础上.建立功率谱加权熵最大分析模型,同时给出其实现算法.进而,依据功率谱加权熵最大的原则,提出功率谱加权熵最大分带倒谱系数分类特征,设计以线性分类距离为优化标准的权系数学习算法.并在地面目标识别的应用中取得较好效果. Power spectral sub-band analysis with the criterion of maximum weighting entropy is derived as a new signal analysis method in this paper. The maximum information is obtained by optimizing the sub-bands allocated in frequency. Based on this method, a algorithm of feature extraction for classification, maximum weighting entropy cepstrum coefficients (MECC), is proposed and applied to ground vehicle recognition system. Experimental results show that MECC has better classification performance than the traditional methods.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期42-48,共7页 Pattern Recognition and Artificial Intelligence
关键词 加权熵最大 分带分析 遗传算法 Maximum Weighting Entropy, Sub-Band Analysis, Genetic Algorithm
  • 相关文献

参考文献12

  • 1Vaidyanathan P P. Theory and Design of M-Channel Maximally Decimated Quadrature Mirror Filters with Arbitrary M, Having Perfect Reconstruction Property. IEEE Trans on Acoustics, Speech and Signal Processing, 1987, 35(4): 476-496.
  • 2Mallat S G. A Theory for Multiresolution Signal Decomposition: the Wavelet Representation. IEEE Trans on Pattern Analysis and Machine Intelligence, 1989, 11(7): 674-693.
  • 3Jayant N, Johnston J, Safranek R. Signal Compression Based on Method of Human Perception. Proc of the IEEE, 1993, 81 (10): 1385-1422.
  • 4Coifman R R, Wickerhauser M V. Entropy Based Algorithm for Best Basis Selection. IEEE Trans on Information Theory, 1992, 38(2): 713-718.
  • 5Jaynes E T. Information Theory and Statistical Mechanics, Physical Review, 1957, 106(4): 620-630.
  • 6Kullback S. Information Theory and Statistics. New York, USA:John Wily&Sons, 1959.
  • 7Shore J E, Johnson R W. Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy. IEEE Trans on Information Theory, 1980, 26(1) : 26-37.
  • 8Bell A J, Sejnowski T J. An Information-Maximization Approach to Blind Separation and Blind Deconvolution. Neural Computation, 1995, 7(6): 1129-1159.
  • 9Erdogmus D, Principe J C. Comparison of Entropy and Mean Square Error Criteria in Adaptive System Training Using Higher Order Statistics Proe of the Independent Components Analysis. Helsinki, Finland, 2000:75-80.
  • 10Erdogmus D, Principe J C. Generalized Information Potential Criterion for Adaptive System Training. IEEE Trans on Neural Networks, 2002, 13(5): 1035-1044.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部