期刊文献+

一种基于图像上下文信息的无监督彩色图像分割算法 被引量:5

An Unsupervised Color Image Segmentation Algorithm Based on Context Information
原文传递
导出
摘要 提出一种基于图像上下文信息的彩色图像无监督分割算法.根据传统马尔可夫随机场(MRF)势函数的定义,引入图像邻域内每两像素间亮度欧氏距离及空间位置信息.完善传统马尔可夫随机场模型中的势函数.将分割问题转化为最大后验问题并运用迭代条件模型求解.运用K均值算法在设定的分类数范围内初始化分割,运用最小消息长度准则选择最佳分类数.实现无监督分割.实验中,将合成图像及真实图像用于分割过程并与其它算法比较,证明本文算法更具优势. An unsupervised color image segmentation method based on image context information is proposed. According to the traditional markov random field (MRF) potential function, the method involves intensity Euclidean distance and spatial position information of pixels in the neighborhood of the image. Therefore, the traditional potential function of MRF segmentation method is improved. The segmentation is transformed into the problem of maximum a posteriori (MAP) which is solved by the iterative conditional model. And K -means is used to initialize the classification in the range of the specified classification numbers. The optimal class number is chosen according to the minimum message length (MML) criterion to complete an unsupervised segmentation. In the experiments, synthetic and real images are employed in segmentation procedure. Compared with other methods, the proposed algorithm is proved to be more effective.
出处 《模式识别与人工智能》 EI CSCD 北大核心 2008年第1期82-87,共6页 Pattern Recognition and Artificial Intelligence
关键词 马尔可夫随机场(MRF) 势函数 无监督分割 最大后验概率 Markov Random Field (MRF), Potential Function, Unsupervised Segmentation,Maximum A Posteriori
  • 相关文献

参考文献10

  • 1Mirmehdi M, Petrou M. Segmentation of Color Textures. IEEE Trans on Pattern Analysis and Machine Intelligence, 2000, 22 (2) : 142-159.
  • 2Ohlander R, Price K, Reddy D R. Picture Segmentation Using a Recursive Region Splitting Method. Computer Graphics and Image Processing, 1978, 8(3):313-333.
  • 3罗希平,田捷,诸葛婴,王靖,戴汝为.图像分割方法综述[J].模式识别与人工智能,1999,12(3):300-312. 被引量:233
  • 4Tseng D C, Lai C C. A Genetic Algorithm for MRF Based Segmentation of Multi-Spectral Textured Images. Pattern Recogni tion I.etters, 1999, 20(14): 1499-1510.
  • 5Tu Zhuowen, Zhu Songchun. Image Segmentation by Data-Driven Markov Chain Monte Carlo. IEEE Trans on Pattern A nalysis and Machine Intelligence, 2002, 24(5): 657-673.
  • 6Barker S A. Image Segmentation Using Markov Random Field Models. Ph. D Dissertation. Cambridge, UK: University of Cambridge. Department of Engineering, 1998.
  • 7Hurn M A, Mardia K V, Hainsworth T J, et al. Bayesian Fused Classification of Medical Images. IEEE Trans on Medical Imaging, 1996, 15(6): 850-858.
  • 8Melas D E, Wilson S P. Double Markov Random Fields and Bayesian Image Segmentation. IEEE Trans on Signal Processing, 2002, 50(2): 357-365.
  • 9Lei T H, Udupa J K. Performance Evaluation of Finite Normal Mixture Model-Based Image Segmentation Techniques. IEEE Trans on Image Processing, 2003, 12(10): 1153-1169.
  • 10Lei T H. Gibbs Ringing Artifact Spatial Correlation and Spatial Correlation in MRI. Proc of the SHE, 2004, 5368:837-847.

二级参考文献16

  • 1Marr D.视觉计算理论[M].北京:科学出版社,1988.51-80.
  • 2Zhu S C,International Conference on COmputer Vision,1998年,847页
  • 3Liang P,Proceeding of the International Conference on Computer Vision,1998年,193页
  • 4Wang J P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,619页
  • 5Wang Y P,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,10期,1040页
  • 6Wu M F,IEEE Trans Pattern Anal Machine Intell,1998年,20卷,8期,858页
  • 7Cheng H D,Pattern Recognition,1998年,31卷,7期,857页
  • 8Li L,Pattern Recognition,1997年,30卷,5期,743页
  • 9Liang K H,Pattern Recognition,1997年,30卷,5期,719页
  • 10Deng W,IEEE Trans Pattern Anal Machine Intell,1996年,18卷,4期,432页

共引文献232

同被引文献26

引证文献5

二级引证文献5

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部