期刊文献+

三角范畴定义中八面体公理的等价命题及其应用 被引量:3

The Equivalent Propositions of the Octahedral Axiom of Triangulated Categories and Applications
下载PDF
导出
摘要 三角范畴是一个带有自同构的加法范畴,并且满足4条公理,其中的1条重要公理是八面体公理.由Grothen-dick-Verdier在上个世纪60年代提出的八面体公理相对于其它3条公理形式比较复杂,应用起来比较不方便.因此研究八面体公理的其它等价命题引起了人们的兴趣.本文在王济荣工作的基础上给出八面体公理的第1个等价命题,再利用对偶的思想导出八面体公理的第2个等价命题。最后利用homotopy cartesian得到八面体公理的第3个等价命题,并利用第3个等价命题简化Peng和Tan的证明. A triangulated category is an addition category with an automorphism. It satisfies four axioms. One of which is the octahedral axiom. It plays an important role. The notion of the octahedral axiom was first introduced by Grothendieck-Verdier,inearly sixties of the last century. Its form is quite complex. And it is not convenient to use. Then studying the other equivalent propositions arouses people's interest. In this paper,the homotopy Cartesian is equivalent with the octahedral axiom if theother three axioms are satisfied are proved. Moreover,two general equivalent propositions of the octahedral axiom are given. As an application,the proof of Peng and Tan is simplified by the third equivalent proposition.
作者 胡彩霞 陈娟
出处 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第2期149-152,共4页 Journal of Xiamen University:Natural Science
关键词 三角范畴 八面体公理 HOMOTOPY CARTESIAN triangulated categories the octahedral axiom homotopy cartesian
  • 相关文献

参考文献4

  • 1Murfet D. Triangulated Categories Part I[EB/OL]. http://therisingsea.org/notes/ Triangulated Categories. pdf.
  • 2王济荣.三角范畴中八面体公理的几个等价命题[J].四川大学学报(自然科学版),2006,43(3):473-478. 被引量:5
  • 3Krause H. Derived categories, resolutions,and Brown representability [ EB/OL ]. http://arxiv.org/ PS_cache/ math/pdf/0511/0511047 v3. pdf.
  • 4Peng L G,Tan Y J. Derived categories, titled algebras,and Drinfel'd doubles[J]. J Algebra, 2003,266: 723.

二级参考文献6

  • 1Happd D. Triangulated categories in the represention theory of finite dimensional algebras[J]. London Math. Soc. LNS,1988, 119.
  • 2Verdier J L. Categories deivees[J], etat. O. Springer LNM, 1977, 569:263.
  • 3Parshall B, Scott L. Derived categories, quasi-hereditary algebra, and algebraic group[J]. Proe. Ottwa-Moosone Workshop Algebra. Carleton-ottawa Math. LNS, 1988, 3:1.
  • 4Peng L G, Xiao J. Root catogories and simple Lie algebras[J]. J. Algebra, 1977, 198:19.
  • 5Peng L G, Xiao J. Triangulated categories and Kac-Moody algebras[J]. Invent. Math, 2000, 140:563.
  • 6Peng L G, Tan Y J. Derived categories, tilted algebras, and Drinfel'd doubles[J]. J. Algebra, 2003, 266:723.

共引文献4

同被引文献7

引证文献3

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部