期刊文献+

芬兰海岸带水域蓝藻水华遥感监测(英文) 被引量:3

Cyanobacteria bloom detection and monitoring from satellite observations in the coastal region of Finland
下载PDF
导出
摘要 MODIS-Terra和MERIS数据被用于芬兰湾蓝藻水华的监测,并对两者的性能进行了比较.研究结果表明:MODIS-Terra波段设置主要针对一类大洋水体,缺乏预警藻蓝素的有效波段;MERIS传感器设置了620nm和665nm波段,基本对应藻蓝素的吸收峰(630nm)和反射峰(650nm),具有蓝藻水华探测的潜力,但在藻华未成型之前,海岸带水体不同优势藻类具有相似的叶绿素特征,较难辨别蓝藻水华.总的来说,MODIS和MERIS数据比较困难实现蓝藻水华初期预警,但可以有效监测已成型的蓝藻水华.这一方法可以用于中国太湖或者海岸带水体藻华探测和监测研究. This study investigates and analyses the possibility of cyanobacteria bloom detection as a case study in the Gulf of Finland and southern Finish lakes. The results show that MODIS data are difficult to be used in cyanobacteria bloom early warning. The main reason is that MODIS data are more suitable for CASE I waters as there are five bands in the spectral region of 400-550nm. However, for CASE II waters (estuary, coastal, and lakes), the maxima of reflectance spectra are shifting towards longer wavelengths with increasing turbidity or increasing amount of CDOM. This suggests that the reflectance maximum in coastal waters often occurs in the spectral range of 550-670nm where MODIS data do not have any spectral bands. In contrast, MERIS data have three bands of 560, 620, and 665nm at the spectral region of 550-670nm. The two bands at 620nm and 665nm are potentially important bands of detecting cyanobacteria bloom of the coastal waters (and/or lakes). The reason is that there are the phycocyanin absorption near 630nm and a reflectance peak near 650rim. In fact, MODIS and MERIS data are unlikely applicable to warn potentially cyanobacteria bloom in its early stages, but able to monitor the already formed blooms. This methodology of satellite-based observations can be applied to detection and monitoring of cyanobacteria bloom in Lake Taihu and coastal regions of China.
出处 《湖泊科学》 EI CAS CSCD 北大核心 2008年第2期167-172,共6页 Journal of Lake Sciences
关键词 蓝藻水华 卫星观测 海岸带水体 内陆湖泊 Cyanobacteria bloom satellite observations coastal waters inland lakes
  • 相关文献

参考文献16

  • 1Sellner KG, Doucette GJ, Kirkpatrick GJ. Harmful algal blooms:causes, impacts and detection. J Ind Microbiol Biotechnol, 2003, 30: 383-406.
  • 2Lindell TD, Pierson D, Premazzi G et al. Manual for monitoring European lakes using remote sensing techniques. Luxembourg: Official Pulications of the European Communities, 1999.
  • 3Zhang Y, Pulliainen J, Koponen S et al. Application of an empirical neural network to surface water quality estimation in the Gulf of Finland using combined optical data and microwave data. Remote Sens Environ, 2002, 81: 327-336.
  • 4Zhang Yuanzhi, Pulliainen JT, Koponen SS et al. Water quality retrievals from combined Landsat TM data and ERS-2 SAR data in the Gulf of Finland. IEEE Trans Geosci Remote Sens, 2003, 41: 622-629.
  • 5Kuusisto M, Koponen J, Sarkkula J. Modelled phytoplankton dynamics in the Gulf of Finland. Enviorn Modelling and Software, 1998, 13: 461-470.
  • 6Mobley CD. Estimation of the remote-sensing reflectance from above surface measurements. Appl Optics, 1999, 38: 7442-7455.
  • 7Lee ZP, Carder KL, Peacock TG et al. Method to derive ocean absorption coefficients from remote-sensing reflectance. Appl Optics, 1996, 35: 453-462.
  • 8Froidefond JM, Gardel L, Guiral D et al. Spectral remote sensing reflectance of cosatl waters in French Guiana under the Amazon influence. Remote Sens Enviorn, 2002, 80: 225-232.
  • 9Sathyendranath S. Remote sensing of ocean colour in coastal and other optically-complex. Waters IOCCG Report, 2000, 3.
  • 10Kirk JTO. Light and photosynthesis in aquatic ecosystems. Massachusetts: Cambridge Press, 1994.

同被引文献51

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部