期刊文献+

牛血清蛋白在盐酸胍和尿素体系中变性的微量热研究 被引量:14

Denaturation Study of Bovine Serum Albumin Induced by the Guanidine Chloride or Urea by Microcalorimetry
下载PDF
导出
摘要 在30℃时用恒温微量热法研究了不同pH值下盐酸胍、尿素诱导牛血清蛋白变性的过程.并用Privalov提出的简单键合模型对量热数据进行了分析,计算了表观键合常数K,简单键合的单个表观键合自由能△G和总吉布斯能△G(a),用变性中点的直线外推方法求出了表观变性焓△Hd.实验结果表明,牛血清蛋白与盐酸胍的键合在碱性条件下更易进行,牛血清蛋白在盐酸胍溶液中的变性焓△Hd在牛血清蛋白的pH=6.97和7.05时为350kJ·mol-1,在pH=9.30时为275kJ·mol-1,表明牛血清蛋白在接近中性时较稳定.而牛血清蛋白与尿素的键合在酸性条件下更易进行,此变性焓△Hd在牛血清蛋白的pH=6.97时为295kJ@mol-1,在pH=7.05和9.30时为230kJ·mol-1.此结果说明牛血清蛋白在两种变性剂溶液中的展开程度是不同的. The denaturation of bovine serum albumin (BSA) induced by guanidine chloride or urea at different pH values was studied by isothermal microcalorimetry measurements at 30℃. The simple bonding model, which was developed by Privalov, was employed to obtain the apparent bonding constant K, the apparent singular bonding Gibbs bonding energy △G and the total Gibbs energy △G(a) between the protein and denaturant from analyzing the calorimetric data. Furthermore, the linear extrapolation at the midpoint of transition was employed to determine the apparent denaturation enthalpy △Hd. The results showed that, for guanidine chloride, the bonding between BSA and guanidine chloride could proceed more easily in an alkaline condition, and the apparent denaturation enthalpy △Hd of BSA by guanidine chloride was 350 kJ·mmol^-1 at pH 6.97 and 7.05, while it was 275 kJ·mol^-1 at pH 9.30, which indicated that BSA was more stabilized in a neutral condition. But for urea, the bonding between BSA and urea would proceed more easily in an acidic condition, and the apparent denaturation enthalpy △Hd of BSA by urea was 295 kJ·mol^-1 at pH 6.97, while 230 kJ·mol^-1 at pH 7.05 and 9.30. The results indicated that the expanding degree of BSA in the two denaturants was different.
出处 《化学学报》 SCIE CAS CSCD 北大核心 2008年第5期515-519,共5页 Acta Chimica Sinica
基金 国家自然科学基金(No.20443002)资助项目
关键词 牛血清蛋白 恒温微量热 盐酸胍 尿素 变性 bovine serum albumin isothermal microcalorimetry guanidine chloride urea denaturation
  • 相关文献

参考文献13

  • 1Chilom, G.; Chilom, O.; Telea, C.; Visan, T. Rev. Roumaine Chim. 20110, 45, 989.
  • 2Watlaufer, D. B.; Malik, S. K.; Stoller, L.; Coffin, R. L. J. Am. Chem. Soc. 1964, 86, 508.
  • 3Vanzi, F.; Madan, B.; Sharp, K. J. Am. Chem. Soc. 1998,120,10748.
  • 4Zou, Q.; Habermann-Rottinghaus, S. M.; Murphy, K. P. Proteins: Struct. Funct. Genet. 1998, 31, 107.
  • 5Schellman, J. A. Biopolymers 1994, 34, 1015.
  • 6Privalov, P. L.; Khechinashvili, N. N. J. Mol. Biol. 1974, 86, 665.
  • 7Kinsella, J. E.; Whitehead, D. M. Adv. Food Nutr. Res. 1989, 33, 343.
  • 8Moosavi-Movahedi, A. A.; Bordbar, A. K.; Taleshi, A. A.; Naderimanesh, H. M.; Ghadam, P. Biochem. Cell Biol. 1996, 28, 991.
  • 9Yamasaki, M.; Yano, H.; Aoki, K. Int. J. Biol. Macromol. 1990, 12, 263.
  • 10Chen, D.-J.; Lu, Y.; Xie, G.-Q.; Zhang, S.-J. Chem. Res. Appl. 2004, 16, 327 (in Chinese).

同被引文献222

引证文献14

二级引证文献42

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部