期刊文献+

肤色信息马氏图的RBPNN人脸识别 被引量:3

Face Recognition Based on RBPNN of Mahalanobis Distance Map for Skin Color Information
下载PDF
导出
摘要 根据肤色信息在YCbCr空间分布特点,提出在基于肤色信息的马氏距离图的特征脸空间中用RBPNN神经网络进行人脸识别。该方法利用肤色信息构造图像的马氏距离图,利用K-L变换构造特征脸空间。在特征脸空间中提取图像的统计特征,以这些统计特征作为输入,构造径向基概率神经网络,利用它的非线性计算和映射能力,进行人脸识别与分类。实验证明,这种方法能够有效地完成人脸识别。 According to skin color distribution in YCbCr color space, a novel face recognition method based on radial basis probabilistic neural network (RBPNN) in Eigenface Space of Mahalanobis Distance Map to Skin Color Information was proposed. Mahalanobis distance map of image was set up with skin color information, and Eigenface space was constructed depending on K-L transformation. In Eigenface space, statistical characteristics of image were extracted, which were served as inputs of neural network. Radial basis probabilistic neural network was constructed in terms of its nonlinear computation and mapping, and used to recognize and classify face image. Experimental result Shows the approach is effective to identify.
出处 《光电工程》 CAS CSCD 北大核心 2008年第3期131-135,共5页 Opto-Electronic Engineering
基金 中国科学院知识创新工程重要方向性项目(KJCX3.SYW.N4)
关键词 人脸识别 马氏距离图 特征脸 径向基概率神经网络 face recognition mahalanobis distance map eigenface radial basis probabilistic neural network
  • 相关文献

参考文献8

  • 1ZHAO W Y, Chellappa R, Rosenfeld A, et al. Face recognition: A literature survey[J]. ACM Computing Surveys, 2003, 35(4): 399-458.
  • 2Turk M, PentlandA. Eigenfaces for recognition[J]. Journal of Cognitive Neuroscience, 1991, 3(1): 72-86.
  • 3Yang M H. Kernel Eigenfaces vs kernel Fisherfaces: face recognition using kernel methods[C]//Proceedings of the Fifth IEEE International Conference on Automatic Face and Gesture Recognition (RGR' 02). Washington: IEEE, 2002: 215-220.
  • 4Angelopoulou E. Understanding the color of human skin[J]. SPIE, 2001, 4299:243-251.
  • 5Vezhnevets V, Sazonov V, Andreeva A. A Survey on Pixel-Based Skin Color Detection Techniques[C]//Proe. Graphicon-2003. Moscow Russia: [s.n.], 2003: 85-92.
  • 6HUANG D S. Radial Basis Probabilistic Neural Networks: Model and Application[J]. International Journal of Patern Recognition and ArtiFicial Intelligence, 1999, 13(7): 1083-1101.
  • 7SIMon HYKIN.神经网络原理[M].叶世伟,史忠植译.北京:机械工业出版社,2004.
  • 8边肇祺.模式识别[M].北京:清华大学出版社,2005.

共引文献86

同被引文献27

  • 1刘岗,沈晔湖,胡静俊,刘济林.基于肤色及深度信息的人脸轮廓提取[J].江南大学学报(自然科学版),2006,5(5):513-517. 被引量:2
  • 2李闯,丁晓青,吴佑寿.一种改进的AdaBoost算法——AD AdaBoost[J].计算机学报,2007,30(1):103-109. 被引量:53
  • 3向桂山,王宣银,梁冬泰.基于人脸肤色和特征的实时检测跟踪算法[J].光电工程,2007,34(4):44-48. 被引量:7
  • 4徐从东,罗家融,肖炳甲.基于肤色信息马氏距离图的人脸检测[J].计算机工程,2007,33(12):196-198. 被引量:5
  • 5HUANG H, ZHOU Y S, ZHANG F, et al. An Optimized Eye Locating and Tracking System for Driver Fatigue Monitoring[C]// Proceedings of the 2007 International Conference on Wavelet Analysis and Pattern Recognition, Beijing, China, November2-4, 2007: 1144-1149.
  • 6FAN X, YIN B C, SUN Y F. Yawning Detection for Monitoring Driver Fatigue[C]//Proeeedings of the Sixth International Conference on Machine Learning and Cybernetics, Hong Kong, China, August 19-22, 2007: 664-668.
  • 7BRANDT T, STEMMER R, RAKOTONIRAINY A. Affordable Visual Driver Monitoring System for Fatigue and Monotony[C]//IEEE International Conference on Systems, Man and Cybernetics, The Hague, Netherlands, October 10-13, 2004: 6451-6456.
  • 8ZHANG Z T, ZHANG J S. Driver Fatigue Detection Based Intelligent Vehicle Control[C]//International Conference on Pattern Recognition, HongKong, China, August20-24, 2006: 1262-1265.
  • 9HORNG W B, CHEN C Y. A Real-time Driver Fatigue Detection System Based on Eye Tracking and Dynamic Template Matching [J]. Tamkang Journal of Science and Engineering (S1560-6686), 2008, 11(1): 65-72.
  • 10VIOLA P, JONES M. Rapid Object Detection Using a Boosted Cascade of Simple Features [C]//IEEE Computer Society Conference on Computer Vision and PatternRecognition, Kauai, HI, United states, December8-14, 2001: 1511-1518.

引证文献3

二级引证文献7

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部