期刊文献+

基于双线性对的秘密重分配方案 被引量:2

Secret redistribution scheme based on bilinear pairing
下载PDF
导出
摘要 现有的秘密重分配方案只考虑了秘密分发者的不可信性,并没有考虑接收者的不可信性,而且这些方案都是基于RSA或者离散对数密码体制的.本文提出一个基于双线性对的秘密重分配方案,假设秘密的分发者和接收者都存在不诚实成员,使用可验证秘密共享技术,不仅能验证影子和子影子的正确性,而且能鉴别不诚实的秘密分发者和接收者,并证明该方案是正确的、鲁棒的和安全的. Existing secret redistribution schemes start from the assumption that only secret senders but no receivers are dishonest. And the schemes are based on either RSA or discrete logarithm encryption. In this paper we propose a secret redistribution scheme based on bilinear pairing and assume that there are dishonest players among secret senders and receivers. The verifiable secret sharing in this scheme can not only verify the correctness of secret shares and sub-shares, but also identify the bad shareholders and had secret receivers. The correctness, robustness and security of the scheme are proved.
出处 《兰州大学学报(自然科学版)》 CAS CSCD 北大核心 2008年第1期82-85,共4页 Journal of Lanzhou University(Natural Sciences)
基金 国家"863"高技术研究发展计划重大项目(2006AA12A106) 航空支撑科技基金项目(04C52009 05F2037)资助
关键词 秘密共享 秘密重分配 双线性对 secret sharing secret redistribution bilinear pairing
  • 相关文献

参考文献9

  • 1WONG T M, WANG C, WING J M. Verifiable secret redistribution for archive systems[C]//Proc of the First IEEE Security in Storage Workshop. Greenbelt, Maryland: IEEE Computer Society Press, 2002: 94-105.
  • 2于佳,李大兴,范玉玲.基于加法共享的可验证秘密再分发协议[J].计算机研究与发展,2006,43(1):23-27. 被引量:6
  • 3VALLS M, VILLAR J, MARQUEZ E. Efficient on-line secret sharing[C]//International Meeting on Coding Theory and Cryptography. Berlin: Springer-Verlag, 1999: 46-52.
  • 4于佳,孔凡玉,李大兴.Verifiable Secret Redistribution for Proactive Secret Sharing Schemes[J].Journal of Shanghai Jiaotong university(Science),2006,11(2):236-241. 被引量:4
  • 5GENNARO R, JARECKI S, KRAWCZYK H, et al. Secure distributed key generation for discrete-log based cryptosystems[C]//Proc of EUROCRYPT 1999. Berlin: Springer-Verlag, 1999: 295-310.
  • 6FELDMAN P. A practical scheme for non-interactive verifiable secret sharing[C]//Proc of the 28th Annual IEEE Symposium on Foundation of Computer Science. New York: IEEE Computer Society Press, 1987: 427-437.
  • 7SHAMIR A. How to share a secret[J]. Communications of the ACM, 1979, 22(11): 612-613.
  • 8LAUTER K. The advantages of elliptic curve cryptography for wireless security[J]. IEEE Wireless Communications, 2004, 11(1): 62-67.
  • 9BONEH D, FRANKLIN M. Identify-based encryption from the weil pairing[C]//Advances in Cryptology- CRYPTO 2001. Berlin: Springer-Verlag, 2001, 213- 219.

二级参考文献2

共引文献6

同被引文献25

引证文献2

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部