摘要
介绍了利用神经网络和模拟退火技术来求解有约束的FMS资源调度问题的方法,有约束的FMS资源调度问题首先被分解为一系列时间间隔的调度,这些时间间隔的调度由事件驱动,随着这些时间间隔的调度的完成,整个调度过程结束。仿真结果表明,由于这种方法是梯度下降法和随机搜索法的综合,因而它可以克服通常神经网络容易陷入局部极小点的缺点。
An approach for resource constrained FMS scheduling is described which integrates Hopfield neural network and simulated annealing in this paper.The resource constrained FMS scheduling problem is first decomposed into a series interval scheduling which is activated by accident.The whole scheduling is completed with a series interval scheduling and the whole scheduling is fulfilled.The simulated results show that the approach can dislodge a state from a local minimum and guide it to the global minimum
出处
《郑州纺织工学院学报》
1997年第1期45-47,共3页
Journal of Zhengzhou Textile Institute