期刊文献+

基于中文宾州树库的浅层语义分析 被引量:4

Shallow semantic parsing based on Chinese Penn Treebank
下载PDF
导出
摘要 采用支持向量机的机器学习方法,以中文宾州树库为基础,对中文文本进行了部分语义角色标注实验。选取了主语、宾语、间接宾语、时间和地点这五种主要的语义角色,以中文PropBank 5.0中的前1 652个句子作为实验的训练集和测试集,选择路径、短语类型、谓词、头词、头词词性等八个属性作为分类特征,采用两阶段分类方法,在测试集上得到的总体语义角色标注的准确率和召回率分别为89.73%和91.26%。实验结果表明该方法对中文浅层语义分析工作是有效的。 This paper presented an experiment on semantic role labeling by using SVM. This experiment was based on Chinese PropBank 5.0, which consisted of 1 652 sentences. The role-labeling set of this experiment included subject, object, !ndirect object, time and location. It used two-phase classification method with eight features, including path, phrase type, etc. For the small scaled training set, the experiment on testing set could reach the accuracy of 89.73% and the recall of 91.26% for semantic role labeling. Results highlight the effectiveness and efficiency of proposed approach for shallow semantic parsing of Chinese.
出处 《计算机应用研究》 CSCD 北大核心 2008年第3期674-676,680,共4页 Application Research of Computers
基金 国家"863"计划资助项目(2002AA117010-10) 国家自然科学基金资助项目(60673043) "十五"攻关教育部科技基础条件平台建设项目
关键词 支持向量机 语义角色标注 中文宾州树库 中文PropBank support vector machine(SVM) semantic role labeling Chinese Penn Treebank Chinese PropBank
  • 相关文献

参考文献15

  • 1车万翔,刘挺,李生.浅层语义分析.自然语言理解与大规模内容计算[M].北京:清华大学出版社,2005.
  • 2GILDEA D, JURAFASKY D. Automatic labeling of semantic roles [ J ]. Computational Linguistics,2002,28 ( 3 ) :245- 288.
  • 3PRADHAN S, WARD W, HACIOGLU K,et al. Shallow semantic parsing using support vector machines[ C ]//Proc of the Human Lanuage Technology Confdrence/North American Chapte of the Association of Comutional Linguistics. Boston: [ s. n. ] ,2004.
  • 4SUN Hong-lin, JURAFSKY D. Shallow semantic parsing of Chinese [ C ]//Proc of the Human Lanuage Technology Conference. Boston: [s. n. ] ,2004.
  • 5宾州树库[EB/OL].http://www.cis.upenn.edu/-chinese/ctb.html.
  • 6XUE Nian-wen,PALMER M. Annotating the propositions in the Penn Chinese Treebank [ C ]//Proc of the 2nd Sighan Workshop. Sapporo :[s. n. ] ,2003.
  • 7中文 PropBank [ EB/OL]. http://www, cis. upenn, edu/- chinese/ cob/index, html.
  • 8XUE Nian-wen, PAMLER M. Automatic semantic role labeling for Chinese verbs [ C ]//Proc of the 19th International Joint Conference on Artificial Intelligence. Edinburgh : [ s. n. ] ,2005,
  • 9VAPNIK V N. The nature of statistical learning theory [ M ]. New York: Springer-Verlag, 1995.
  • 10PLATT J C. Fast training of support vector machines using sequential minimal optimization [ M ]//SCHOLKOPF B, BURGES C, SMOLA A. Advances in Kernel Methods: Support Vector Machines. Cambridge: MIT Press, 1998:185-208.

共引文献6

同被引文献33

引证文献4

二级引证文献14

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部