期刊文献+

基于双因素方差分析的推荐算法 被引量:1

Recommendation approach based on double-factorial analysis of variance
下载PDF
导出
摘要 提出一种新的基于双因素方差分析的推荐算法DFAR。该方法基于成熟的统计学模型,简单易理解,具有很好的鲁棒性。实验结果证明,该算法相比传统的项目协作过滤算法取得了更好的推荐效果,并大大节省了算法所需要的空间。 This paper presented a recommendation algorithm, named DFAR, which was based on double-factorial analysis of variance. DFAR had well studied statistical properties, easy-intelligibility and good robusticity. Experiments show that this algorithm can achieve better prediction accuracy than traditional item-based CF algorithm. Furthermore,it can dramatically save the storage space.
出处 《计算机应用研究》 CSCD 北大核心 2008年第3期698-701,共4页 Application Research of Computers
基金 国家自然科学基金资助项目(60673062) 华南理工大学自然科学青年基金资助项目 华南理工大学学生研究计划资助项目
关键词 推荐系统 双因素方差分析 协作过滤 recommendation system double-factorial analysis of variance collaborative filtering
  • 相关文献

参考文献1

二级参考文献22

  • 1[1]Konstan J, Miller B, Maltz D et al. GroupLens: Apply collaborative filtering to usenet news. Communications of the ACM, 1997, 40(3):103-110
  • 2[2]Herlocker J, Konstan J, Borchers A, Ridel J. An algorithmic framework for performing collaborative filtering. In: Proc Conference on Research and Development in Information Retrieval, New York, 1999. 57-63
  • 3[3]Shardanand U, Maes P. Social information filtering: Algorithms for automating "word of mouth." In: Proc ACM CHI Conference, Los Angeles, 1995.127-131
  • 4[4]Perkowitz M, Etzioni O. Adaptive Web sites: Automatically synthesizing Web pages. In: Proc AAAI98, Madison, Wisconsin, 1998. 727-732
  • 5[5]Schechter S, Krishnan M, Smith M D. Using path profiles to predict HTTP requests. In: Proc the 7th International World Wide Web Conference, Brisbane, Australia, 1998. 214-209
  • 6[6]Spiliopoulou M. The laborious way from data mining to web mining. International Journal of Computer System, Science & Engineer, Special Issue on "Semantics of the Web", 1999, 3(1): 105-113
  • 7[7]Cooley R, Mobasher B et al. Data preparation for mining world wide web browsing patterns. Knowledge and Information Systems, 1999, 1(1):17-24
  • 8[8]Buchner A G, Mulvenna M D. Discovering internet marketing intelligence through online analytical Web usage mining. SIGMOD Record, 1998, 27(4):54-61
  • 9[9]Shahabi C, Zarkesh A M, Adibi J et al. Knowledge discovery from users Web-page navigation. In: Proc Workshop on Research Issues in Data Engineering, Birmingham, England, 1997. 312-324
  • 10[10]Yan T, Jacobesn M, Garcia-Molina H et al. From user access patterns to dynamic hypertext linking. In: Proc the 5th International World Wide Web Conference, Paris, France, 1996. 402-410

共引文献30

同被引文献6

引证文献1

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部