期刊文献+

微型动态被动阀效率分析及其优化设计 被引量:1

Efficiency Analysis and Optimal Design of a Micro Dynamic Passive Valve
下载PDF
导出
摘要 为提高现有三角结构微型动态被动阀的效率,先对动态被动阀效率表达式进行了研究,得出其效率取决于流体逆、正向损失系数比的结论,而后基于这一结论建立了一种优化模型,并与普通三角结构进行了效率比较。数值计算与对比实验的结果表明,优化模型的效率提高到三角结构的两倍。 To improve a micro dynamic passive valve, we study its efficiency equation and conclude that its efficiency is determined by the loss coefficient ratio between positive direction flow and negative direction flow of the liquid inside the pumps. The bigger the ratio, the more efficient the pump is. Based on the conclusion, we establish an optimization model of the micro dynamic passive valve to raise the ratio. Then we compare the efficiency of the optimization model with that of the existing micro dynamic passive valve of triangle shape. The numerical calcu- lation and comparative experiment indicate that the optimization model reduces the pressure loss of positive direction flow and enhances the efficiency as twice as that of the micro dynamic passive of triangle shape.
出处 《机械科学与技术》 CSCD 北大核心 2008年第2期213-217,共5页 Mechanical Science and Technology for Aerospace Engineering
关键词 微型动态被动阀 损失系数比 效率 优化设计 micro dynamic passive valve loss coefficient ratio efficiency optimal design
  • 相关文献

参考文献4

  • 1Woias P. Micropumps-summarizing the first two decades [ A ]. Proceedings of SPIE[ C ], 2001,4560:39 - 52.
  • 2Nguyea N T, Huang X Y, Chuan T K. MEMS-micropumps: a review[J]. J. Fluids Eng., 2002,124(2):384-392.
  • 3Gerlach T, Wumus H. Working principle and performance of the dynamic micropump[ J ]. Sensors and Actuators A, 1995,50: 135 - 140.
  • 4Tsai J H, Lin L. A thermal-bubble-actuated micronozzle-diffuser pump [ J ]. J. Microelectromech Systems, 2002,11 ( 6 ) : 665 -671.

同被引文献10

  • 1Tsal J H, Lin L A thermal-bubble-actuated micronozzle-diffuser pump[J]. J. Microelectromech Systems, 2002,11(6):665 - 671
  • 2Woias P. Micropumps-summarizing the first two decades[ A]. Proceedings of SPIE[C], 2001,4560: 39 -52
  • 3Bratter R L. Commercial success in the MEMS marketplace[A]. Proceedings of Optical MEMS' 2000 [ C ], Kauai: IEEE, 2000:29-30
  • 4Amato I. Micromachines: fomenting a revolution, in miniature [J]. Science, 1998,282:402-405
  • 5McMichael J M. Progress and Prospects for Active Flow Control Using Microfabricated Electromechanical Systems(MEMS)[R]. AIAA-96-0306, 1996
  • 6Tan C S, Breuer K, Corke T, et al. MEMS-based Control for Air-Breathing Propulsion[ R]. ADA389628, Cambridge: MIT Gas Turbine Lab, 2001
  • 7Washburn A E, Amity M. Active Flow Control on the Slingray UAV: Physical Mechanisms[R]. AIAA-2004-0745, 2004
  • 8Schabmueller C G J, Koch M, Mokhtarl M E, et al. A Self-aligning gas/liquid micropump[ J]. J. Mlcromech. Mcroeng, 2002,(12) : 420-424
  • 9Gerlach T, Wumus H. Working principle and performance of the dynamic micropump[J]. Sensors and Actuators A, 1995,50: 135 - 140
  • 10黄国平等.肋条式微型无阀泵[P].中国,Z1200610038272.6,2006,08,02

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部