1Shaw LM, Korecka M, Venkataramanan R, et al. Mycophenolic acid pharmacodynamics and pharmacokinetics provide a basis for rational monitoring strategies. Am J Transplant,2003,3: 534 -542.
2Basu NK, Kole L, Kubota S, et al. Human UDP-glucuronosyhransferases show a typical metabolism of mycophenolic acid and inhibition by curcumin. Drug Metab Dispos,2004,32:768 - 773.
3Bernard O, Guillemette C. The main role of UGT1A9 in the hepatic metabolism of mycophenolic acid and the effects of naturally occurring variants. Drug Metab Dispos,2004,2:775 - 778.
4Picard N, Ratanasavanh D, Prémaud A, et al. Identification of the UDP-glucuronosyltransferase isoforms involved in mycophenolic acidphase Ⅱ metabolism. Drug Metab Dispos,2005 ,33 :139 -146.
5Picard N, Cresteil T, Prémaud A, et al. Characterization of a phase 1 metabolite of mycophenolic acid produced by CYP3A4/5. Ther Drug Monit,2004,26(6) :600 -608.
6Mackenzie PI, Owens IS, Burchell B, et al. The UDP glyeosyltransferase gene superfamily: recommended nomenclature update based on evolutionary divergence. Pharmacogenetics, 1997,7:255 - 269.
7Mackenzie PI, Bock KW, Burchell B, et al. Nomenclature update for the mammalian UDP glycosyltransferase (UGT) gene superfamily. Pharmacogenet Genomics,2005,15 (10) :677 - 685.
8Gong QH, Cho JW, Huang T, et al. Thirteen UDPglucuronosyltransferase genes are encoded at the human UGT1 gene complex locus. Pharmacogenetics,2001,11:357 - 368.
9Shipkova M, Strassburg CP, Braun F, et al. Glucuronide and gluco- side conjugation of mycophenolic acid by human liver, kidney and intestinal microsomes. Br J Pharmacol,2001,132:1027 - 1034.
10Miles KK, Stern ST, Smith PC, et al. An investigation of human and rat liver microsomal mycophenolic acid glucuronidation : evidence for a principal role of UGT1A enzymes and species differences in UGT1A specificity. Drug Metab Dispos,2005,33(10) :1513 - 1520.
2Wu JF, Ni YH, Lin YT, et al. Human interleukin-10 genotypesare associated with different precore/core gene mutation patterns inchildren with chronic hepatitis B virus infection. J Pediatr, 2011,158:808-813.
3Anglicheau D, Legendre C , Beaune P, et al. Cytochrome P4503 A polymorphisms and immunosuppressive drugs : an update.Pharmacogenomics, 2007,8 ; 835 -849.
4Staatz CE, Tett SE. Clinical pharmacokinetics andpharmacodynamics of tacrolimus in solid organ transplantation.Clin Pharmacokinet, 2004,43 :623-653.
5Coto E,Tavira B. Pharmacogenetics of calcineurin inhibitors inrenal transplantation. Transplantation, 2009 ,88 Suppl 3 :S62-67.
6Li D, Abudula A, Abulahake M, et al. Influence of CYP3A5 andMDR1 genetic polymorphisms on urinary 6 beta-hydroxycortisol/cortisol ratio after grapefruit juice intake in healthy Chinese. JClin Pharmacol, 2010,50:775-784.
7Tavira B,Coto E,Diaz-Corte C, et al. Pharmacogenetics oftacrolimus after renal transplantation : analysis of polymorphisms ingenes encoding 16 drug metabolizing enzymes. Clin Chem LabMed, 2011,49:825-833.
8Choi JH, Lee YJ, Jang SB, et al. Influence of the CYP3A5 andMDR1 genetic polymorphisms on the pharmacokinetics oftacrolimus in healthy Korean subjects. Br J Clin Pharmacol,2007,64:185-191.
9Wang P, Mao Y, Razo J, et al. Using genetic and clinical factorsto predict tacrolimus dose in renal transplant recipients.Pharmacogenomics, 2010,11 : 1389-1402.
10Elens L,Bouamar R, Hesselink DA, et al. A new functionalCYP3A4 intron 6 polymorphism significantly affects tacrolimuspharmacokinetics in kidney transplant recipients. Clin Chem,2011,57:1574-1583.