期刊文献+

模糊C-均值(FCM)聚类算法的实现 被引量:34

THE IMPLEMENTATION OF THE FUZZY C-MEANS CLUSTERING ALGORITHM
下载PDF
导出
摘要 传统的FCM算法能够将靠近边界的具有固有形状的两个簇合并成为一个大的簇。然而,对于一些稍微复杂的数据,如果没有其它的像去除小簇之类的机制的话,FCM算法很难将非常接近的类聚类到一起。给出的聚类算法是在传统FCM算法的循环之后添加了去除掉空簇的步骤,解决了上述很难将非常接近的类聚到一个簇中的问题。另外,为便于选出最优结果,在递归之后又添加了计算聚类有效性的步骤。最后用Java实现了该算法并在数据集上进行了实验,证实了改进方法的有效性。 The traditional FCM algorithm lumps the two clusters close to boundaries with natural shapes into a large cluster. However,for some complex data, it is hard for the FCM to cluster the very close classes together without the help of other mechanisms such as mechanism for elimination of small clusters. The step of eliminating empty clusters is added after the loop of traditional FCM ,and the clustering problem is solved. In addition, in order to choose the optimum result, a step of computing clustering validity is added after the iteration of FCM. Finally, an implementation of this algorithm in java is given, and the test on the dataset proves the validity of the algorithm.
出处 《计算机应用与软件》 CSCD 北大核心 2008年第3期48-50,共3页 Computer Applications and Software
基金 陕西省自然科学基金资助项目(2006F50)
关键词 模糊聚类 FCM算法 聚类有效性 Fuzzy clustering FCM algorithm Clustering validity
  • 相关文献

参考文献5

  • 1钮永莉,陈水利.模糊C均值算法的改进[J].模糊系统与数学,2004,18(z1):304-308. 被引量:12
  • 2Carl G Looney. A Fuzzy Clustering and Fuzzy Merging Algorithm. Computer Science Department/171, University of Nevada, Redo,NV89557. 1999.
  • 3WBCD dataset, http://www. stat. yale. edu/- pollard/230. spring03 /WBC/.
  • 4宫改云,高新波,伍忠东.FCM聚类算法中模糊加权指数m的优选方法[J].模糊系统与数学,2005,19(1):143-148. 被引量:81
  • 5Wang Xizhao, Wang Yadong, Wang Lijuan. Improving fuzzy c-means clustering based on feature-weight learning. Pattern Recognition Letters 25, 2004:1123-1132.

二级参考文献11

  • 1[1]J. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms. Plenum Press, New York, 1981.
  • 2[3]A. M Bensaid, L. O Hall, J. C Bezdek. P Clarke. Partially supervised clustering for image segmentation. Pattern Recognition, 1996.
  • 3[4]A. M Bensaid, L. O Hall, J. C Bezdek, and L. P Clarke, et al., Validity guided (re)clustering with applications to image segmentation. IEEE Trans. Fuzzy Systems, Vol. 4, 1996.
  • 4章小平.基于塔形模糊聚类的纹理分割方法[M].西安:西安电子科技大学,2003.22-33.
  • 5Bezdek J C. Patten recognition with fuzzy objective function algorithms[M]. New York: Plenum Press, 1981.
  • 6Bezdek J C. A physical interpretation of fuzzy ISODATA[J]. IEEE Trans.Syst. Man Cybern., 1976, SMC-6:387-390.
  • 7Cheng Y S,Chan K P. Modified fuzzy ISODATA for the classification of handwriting Chinese characters[A]. Proc.of Int. Conf. Chinese Comput.[C]. Singapore,1986:361-364.
  • 8Bezdek J C,Hathaway R. Convergence theory for fuzzy c-means:counterexamples and repairs[J]. IEEE Trans. Syst. Man Cybern.,1987,17(5):873-877.
  • 9Pal N R, Bezdek J C. On cluster validity for the fuzzy c-means model[J]. IEEE Trans. Fuzzy System, 1995, 3(3):370-379.
  • 10刘宜平,沈毅,刘志言.一种FCM聚类算法的改进与优化[J].系统工程与电子技术,2000,22(4):1-3. 被引量:17

共引文献90

同被引文献269

引证文献34

二级引证文献153

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部