摘要
研究了高阶叠层矢量基函数的尺度因子对迭代法求解矩阵方程收敛性的影响,选择了可以有效降低矩阵条件数的尺度因子;在此基础上,详细阐述了求解基于高阶叠层矢量基函数阻抗矩阵方程的叠层共轭梯度方法(HCGM),并从理论上分析了叠层共轭梯度算法的收敛性能。通过计算实例表明,与共轭梯度方法(CGM)相比,使用HCGM可以大幅度减少矩阵方程的迭代求解时间。
The convergence caused by different scalling factors of higher order hierarchical vector basis functions are studied as iterative method is used to solve the impedance matrix equation, and a compatible scaling factor is chosen to decrease the condition number of the impedance matrix. Moreover, the hierarchical conjugate gradient method (HCGM) is discussed and its performance to accelerate convergence is also theoretically analyzed for a proper scalling factor. Some typical numerical examples show that the time taken by solving the matrix equation using HCGM is much less than that using the conjugate gradient method (CGM).
出处
《电波科学学报》
EI
CSCD
北大核心
2008年第1期100-105,共6页
Chinese Journal of Radio Science
基金
国家自然科学基金(No.60571022
No.60431010)
国家部级基金(No.9140A03010206DZ0238)
关键词
电磁场积分方程
叠层基函数
叠层共轭梯度算法
尺度因子
electromagnetic integral equations
hierarchical basis functions
hierarchical conjugate gradient method
scaling factor