期刊文献+

不完备市场下分红保险的指数效用定价

Exponential Utility Pricing of Participating Life Insurance Contracts under Incomplete Market
下载PDF
导出
摘要 分红保险属于保险公司的债务,由于其在设计过程中自带的期权性质将影响保险公司的利润和偿付能力,对它的定价不容忽视。在假定保单持有人的投资组合中,股票价格服从跳跃-扩散过程并假定保单持有人是风险厌恶型,其效用函数为指数函数,运用等价鞅测度的理论,建立了计算保单价值的MEMM模型并给出了相应的定价公式。 The participating life insurance contracts represent liabilities to the issuers implying that their value and the embedded options included in the design of these contracts will affect the profit and the solvency of the insurance company, it should be properly valued. MEMM pricing model for these contracts which providing interest rate guarantees is developed, when a jump-diffusion for the evolution of the underlying reference portfolio is used and the investors is risk aversion and the utility function is exponential utility function.
出处 《科学技术与工程》 2008年第6期1393-1397,共5页 Science Technology and Engineering
关键词 分红寿险 MEMM 不完备市场 LEVY过程 等价鞅测度 participating contracts MEMM incomplete markets levy processes equivalent martingale measure
  • 相关文献

参考文献8

  • 1[1]Brennan M,Schwartz E S The pricing of equity linked life insurance policies with an asset value guarantee.Journal of Finance and Economics,1976;3:195-213.
  • 2[2]Boyle P P,Schwartz E S Equilibrium prices of guarantees under equity linked contracts Journal of Finance and Insurance,1977;4:639-660.
  • 3[3]Baccinello A R,Ortu F Pricing equity-linked insurance with endogenous minimum guarantees Insurance:Mathematicas and economics,1993:12:245-258.
  • 4[4]Aase K,Persson S A Valuation of the minimum guaranteed return embedded in life insurance products Journal of finance and insurance,1997;64:599-617.
  • 5[5]Laura Ballotta A Levy process-based framework for the fair valuation of participating life insurance contracts.Mathematics and Economics,2005;37:173-196.
  • 6[6]Thomas Goll.Ludser Ruschendorf Minmax and minimal distance margingale measures and their relationship to portfolio optimization,Finance and Stochast,2001,5(4):557-581.
  • 7[7]Tsukasa Fujiwara,Yoshio Miyahara The minimal entropy martingale measures for geometric levy process Finance and Stochastics,2003;7:509-531.
  • 8[8]Miyahara Y and Alexander Novikov Geometric Levy Process Pricing Model,Proceedings of Steklov Mathematical Institute,2002;237:176-191.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部