期刊文献+

基于非平衡统计力学的生长原理 被引量:3

Growth Principle Based on Non-equilibrium Statistical Mechanics
下载PDF
导出
摘要 结构生长现象普遍存在于生物界和非生物界。通过一般化地处理微观组元的复杂相互作用,基于非平衡统计力学,提出以最大流原理作为揭示生长奥秘的基本原理,描述了生长的一般过程,并讨论其在干细胞分化、工业生态系统的形成、城市的发展等相关案例中的应用,力图为从生物到非生物、从自然到社会等诸多领域的生长现象提供统一的描述。 Structural growth, as always a challenging mystery, prevails in both living and non-living worlds, and relates both with natural sciences and social sciences, Based on a model of a complex dynamical system, a universal physical principle, Maximum Flux Principle (MFP), is proposed as a fundamental law for structural growth. It is assumed that a dynamical system always tends to follow an optimal process to acquire maximized flux under certain constraints. A general growing process can be seen as complex interactions among microscopic elements from the point of view of non--equilibrium statistical mechanics, An artificial neural networks simulation technique based on the theory is developed to correlate experimental phenomena and data. Typical practical examples as stem cell differentials, formation of eco-industrial systems and urban development are provided. The paper offers a unified description of universal growth phenomena prevailing in diverse fields.
出处 《科技导报》 CAS CSCD 2008年第4期80-86,共7页 Science & Technology Review
基金 国家自然科学基金项目(50406018) 天津大学杰出人才引进基金项目(W20201) 教育部留学回国人员科研启动基金项目(413042)
关键词 结构生长 非平衡统计力学 最大流原理 广义基因 structural growth non-equilibrium statistical mechanics MFP generalized gene
  • 相关文献

参考文献7

二级参考文献67

共引文献60

同被引文献44

  • 1CHAILi-he,WENDong-sheng.Hierarchical Self-organization of Complex Systems[J].Chemical Research in Chinese Universities,2004,20(4):440-445. 被引量:27
  • 2张新时.研究全球变化的植被-气候分类系统[J].第四纪研究,1993,13(2):157-169. 被引量:198
  • 3何萍,李志强.城市群地震[J].华南地震,2005,25(2):37-46. 被引量:2
  • 4Rietkerk M, Dekker S C, de Ruiter P C, et al. Self-organized patchiness and catastrophic shifts in ecosystems [J]. Science, 2004, 305 (5692): 1926-1929.
  • 5Gallagher R, Appenzeller T. Beyond reductionism[J]. Science, 1999, 284 (5411): 87-109.
  • 6Odum H T. Self-organization, transformity, and information [J]. Science, 1998, 242(4882): 1132-1139.
  • 7Loreau M. Consumers as maximizers of matter and energy flow in ecosystems[J]. Am Nat,1995, 145(1): 22-42.
  • 8Schneider E D, Kay J J. Life as a manifestation of the second law of thermodynamics[J]. Math Comput Modeling, 1994, 19(6-8): 25-48.
  • 9Kondepudi D K, Prigogine I. Modem thermodynamics: from Heat engines to dissipative processes[M]. London: Wiley, 1998.
  • 10Dewar R C. Maximum entropy production and the fluctuation theorem[J]. Journal of Physics A-Mathematical and General, 2005, 38 (21): L371- L381.

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部