期刊文献+

一种简化的动态独立元分析方法 被引量:1

A simplified dynamic independent component analysis
下载PDF
导出
摘要 在动态过程中,传统主元分析(PCA)法无法利用过程变量的自相关性对过程进行准确地分析,而且过程数据不一定满足高斯分布从而导致误报和漏报,这个问题可以采用动态独立元分析法(DICA)来解决.本文根据动态过程时间滞后的大小提出了一种简化的DICA方法,并用相应的二阶动态模型进行了仿真验证,结果表明与DICA相比,该方法同样有效且简便易行. The traditional principal component analysis (PCA) can not analyze dynamic process with the selfcorrelation information of the process variable. Moreover, the process data may not follow Gaussian distribution so as to cause the improper detection of PCA. Dynamic independent component analysis (DICA) has the ability to solve the problems above. In this paper, a simplified DICA approach is proposed based on the time lag of the dynamic process, correspondingly, the second order autoregressive models are used to validate the possibility of the method. The simulation results show that it is an efficient and simple method compared with DICA.
作者 边福强 高翔
出处 《吉林化工学院学报》 CAS 2008年第1期49-52,共4页 Journal of Jilin Institute of Chemical Technology
基金 辽宁省教育厅资助项目(2005320)
关键词 动态独立元分析 时滞 自相关 dynamic independent component analysis time lag self-correlation
  • 相关文献

参考文献4

  • 1Wenfu Ku, Robert Storer, Christos Georgakis. Disturbance detection and isolation by dynamic principal component analysis[ J ]. Chemometrics and Intelligent Laboratory Systems, 1995,30:179 - 196.
  • 2Jong-Min Lee, ChangKyoo Yoo, In-Beum Lee. Statistical monitoring of dynamic processes based on dynamic independent component analysis [ J ]. Chemical Engineering Science,2004,59:2 995 - 3 006.
  • 3A. Hyvarinen, Fast and robust fixed-point algorithras for independent component analysis, IEEE. Trans[ J ]. Neural Networks, 1999,10:626 -634.
  • 4B.W. Silverman. Density Estimation for Statistics and Data Analysis[M]. UK:Chapman & Hall,1986.

同被引文献11

  • 1刘育明,梁军,钱积新.工业流化床反应器结块监视的动态PCA方法[J].化工学报,2004,55(9):1546-1549. 被引量:12
  • 2赵忠盖,刘飞.因子分析及其在过程监控中的应用[J].化工学报,2007,58(4):970-974. 被引量:24
  • 3Donald B. Rubin,Dorothy T. Thayer.EM algorithms for ML factor analysis[J]. Psychometrika . 1982 (1)
  • 4Gao Xiang,Liu Fei.Dynamic process monitoring method based on recursive generalized eigenvalue decomposition using temporal covariance matrix. Proceedings of the7th World Congress on Intelligent Control and Automation . 2008
  • 5Chiang LH,Russell EL,Braatz RD.Fault Detection and Diagnosis in Industrial Systems. . 2001
  • 6Ku W,Storer RH,Georgakis C.Disturbance Detection and Isolation by Dynamic Principal Component Analysis. Chemometrics and Intelligent Laboratory Systems . 1995
  • 7Tipping ME,Bishop CM.Probabilistic principal component analysis. Journal of the Royal Statistical Society Series B Statistical Methodology . 1999
  • 8Ghahramani Z,Hinton GE.The EM algorithm for mixtures of factor analyzers. Technical Report CRG-TR-96-1 . 1996
  • 9Lu N,Gao F,Yang Y,Wang F.PCA-based modeling and on-line monitoring strategy for uneven-length batch processes. Industrial and Engineering Chemistry . 2004
  • 10赵忠盖,刘飞.动态因子分析模型及其在过程监控中的应用[J].化工学报,2009,60(1):183-186. 被引量:7

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部