期刊文献+

基于PARAFAC与阵列旋转的阵列标校方法 被引量:2

Array Calibration Based on both PARAFAC and Array Rotation
下载PDF
导出
摘要 该文研究直接序列扩频通信系统天线阵列标校问题。提出了一种基于PARAFAC与阵列旋转的阵列标校方法。该方法利用直接序列扩频通信信号特点以及平行因子的分析方法对阵列通道参数进行估计,并结合天线阵列的旋转技术得到一种阵列有源标校方法。该方法无需知道标校源信号的波达角,就可对阵列进行标校,给实际应用带来方便。仿真结果表明该方法可行、有效。 The array calibration for spreading communication system is discussed in this paper. Based on both PARAFAC and array rotation, an array calibration approach is proposed. This calibration approach is employing auxiliary spreading code signal, PARAFAC analysis and array rotation. Array calibration can be performed without the DOA knowledge of auxiliary signal, which is convenient in practice. Simulation result shows that the calibration approach is feasible and efficient.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第3期656-659,共4页 Journal of Electronics & Information Technology
基金 国家部级基金资助课题
关键词 无线通信 直接序列扩频 平行因子 阵列标校 Wireless communication Direct sequence spread spectrum Parallel factor Array calibration
  • 相关文献

参考文献7

  • 1Fante R L and Vaccaro J J. Wideband cancellation of interference in a GPS receive array [J]. IEEE Trans. on AES, 2000, 36(2): 549-564.
  • 2Pierre J. Experiment performance of calibration and direction-finding algorithms [C]. Proc IEEE ICASSP, Dept. of Electron. Eng., Minnesota Univ., Minneapolis, MN, USA, 1991, (1.2): 1365-1368.
  • 3See C M S. Sensor array calibration in the presence of mutual coupling and unknown sensor gains and phases[J]. Electronics Lett, 1994, 30(5): 373-374.
  • 4Sidiropoulos N D, Georgios G B, and Bro R. Blind PARAFAC receivers for DS-CDMA systems, [J]. IEEE Trans. on Signal Processing, 2000, 48(3): 810-821.
  • 5Sidiropoulos N D, Bro R, and Georgios G B. Parallel factor analysis in sensor array processing [J]. IEEE Trans. on Signal Processing, 2000, 48(8): 2377-2388.
  • 6Harshman R A. Foundations of the PARAFAC procedure: Model and conditions for an "explanatory" multi-mode factor analysis[R]. UCLA Working Papers in Phonetics, 1970, vol. 16, no. 1: 1-84.
  • 7Kruskal J B. Three-way arrays: Rank and uniqueness of trilinear decompositions, with applications to arithmetic complexity and statistics [R]. Linear Algebra Applications, 1977, (18): 95-138.

同被引文献25

  • 1梁军利,刘丁,张军英.基于平行因子分析的频率、二维到达角和极化参数联合估计[J].中国科学:信息科学,2010,40(1):63-77. 被引量:1
  • 2蒋毅,古天祥.基于有限域搜索的MUSIC法快速频率估计[J].仪器仪表学报,2006,27(11):1526-1528. 被引量:17
  • 3DJEDDOU M, BELOUCHRANI A, AOUADA S. Maxi- mum likelihood angle-frequency estimation in par- tially known correlated noise for low-elevation tar-gets[J]. IEEE Transactions on Signal Processing, 2005, 53(8): 3057-3064.
  • 4SWINDLEHURST A L, STOICA P, JANSSON M. Exploiting arrays with multiple invariances using music and mode[J]. IEEE Transactions on Signal Processing, 2001, 49(11) : 2511-2521.
  • 5WAX M, SHAN T J, KAILA T. Spatio-temporal spectral analysis by eigenstructure methods[J]. IEEE Transactions on Acoustics, Speech, Signal Process- ing, 1984, 32(4): 817-827.
  • 6LEMMA A N, Van Der VEEN A J, DEPRETTERE E F. Analysis of joint angle-frequency estimation using ESPRIT[J]. IEEE Transactions on Signal Processing, 2003, 51(5): 1264-1283.
  • 7SIDIROPOULOS N D, BRO R, GIANNAKIS G B. Parallel factor analysis in sensor array processing.[J]. IEEE Transactions on Signal Processing, 2000, 48 (8): 2377-2388.
  • 8ZHANG Xiaofei, FENG Gaopeng, Xu Dazhuang. Angle-frequency estimation using trilinear decompo- sition of the oversampled output[J]. Wireless Personal Communications, 2009, 51(2): 365-373.
  • 9ZHANG Xiaofei, GAO Xin, Xu Dazhuan. Novel blind carrier frequency offset estimation for OFDM sys- tem with multiple antennas[J]. IEEE Transactions on wireless communications, 2010, 9(3): 881-885.
  • 10SIDIROPOULOS N D, BRO R. On the uniqueness of multilinear decomposition of N-way arrays[J]. Jour- nal of Chemometrics, 2000, 14(3): 229-239.

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部