期刊文献+

基于Laguerre多项式的边界积分方程时域求解 被引量:1

Solution of the Boundary Integral Equation in Time Domain Based on the Laguerre Polynomials
下载PDF
导出
摘要 针对时域积分方程中存在的晚时震荡问题,介绍了基于Laguerre多项式的电场、磁场和混合场积分方程,求解了导体球和导体圆柱的时域电流分布和后向散射场以及单站RCS。结果表明,3种积分方程很好地解决了晚时震荡问题,混合场积分方程具有更高的计算精度。 In order to eliminate the late-time-oscillate in time domain integral equation, EFIE, MFIE and CFIE which based on the method of MOD using Laguerre polynomials as temporal basis function were introduced, induced current distributing and backward scattering of far field in time domain and monostatic RCS of a conducting sphere and a cylinder were given. The results showed that they eliminate the late-time-oscillate effectively and the CFIE has higher precision than the other two.
出处 《电子与信息学报》 EI CSCD 北大核心 2008年第3期742-745,共4页 Journal of Electronics & Information Technology
关键词 单站雷达散射截面 拉盖尔多项式 混合场积分方程 阶数步进 时间步进 Monostatic RCS Laguerre polynomial Combined Field Integral Equation (CFIE) Marching On in Degree(MOD) Marching On in Time(MOT)
  • 相关文献

参考文献12

  • 1赵延文,聂在平,徐建华,武胜波.时域电场积分方程的稳定求解[J].电波科学学报,2004,19(2):148-152. 被引量:12
  • 2He J Q. MoM and MLFMA for Scattering from Dielectric Target in Layered-Medium Environment [D]. NewYork: Duke University, 2000.
  • 3Chu Y H, Chew W C, and Zhao J S, et al.. A surface integral equation formulation for low frequency scattering from a composite object [J]. IEEE Trans. on AP, 2003, 51(10): 2837-2843.
  • 4Oijala P Yla and Taskinen M. Application of combined field integral equation for electromagnetic scattering by dielectric and composite objects [J]. IEEE Trans. on AP, 2005, 53(3): 1168-1173.
  • 5S M and Wilton D R. Transient scattering by conducting surface of arbitrary shape [J]. IEEE Trans. on AP, 1991, 39: 56-61.
  • 6Vechinski D A and Rao S M. A stable procedure to calculate the transient scattering by conducting surfaces of arbitrary shape [J]. IEEE Trans. on Antennas Propagate, 1992, 40: 661-665.
  • 7Jung B H and Sarkar T K. Time domain electric field integral equation with central finite difference [J]. Microwave And Optical Technology Letters, 2001, 31: 429-435.
  • 8Jung B H and Sarkar T K. Time-domain CFIE for the analysis of transient scattering from arbitrarily shaped 3D conducting objects [J]. Microwave And Optical Technology Letters. 2002, 34(4): 289-296.
  • 9Jung B H, Sarkar T K, and Zhong Ji, et al.. Time-domain analysis of conducting wire antanna and scatterers [J]. Microwave And Optical Technology Letters, 2003, 38(6): 433-436.
  • 10Ji Z, Sarkar T K, Jung B H, and Chung Y S. A stable solution of time domain electric field integral equation for thin-wire antennas using the laguerre polynomials[J]. IEEE Trans. on Antennas And Propagation, 2004, 52(10): 2641-2649.

二级参考文献10

  • 1R F Harrington. Field Computation by Moment Methods[M]. Melbourne, FL: Krieger, 1968.
  • 2聂在平 胡俊.三维矢量电磁散射高效数值分析中新的迭代方法[J].电波科学学报,1999,14:99-102.
  • 3E Bleszynski, M Bleszynski, and T Jaroszewicz. AIM: Adaptive integral method for solving large-scale electromagnetic scattering and radiation problem[J]. Radio Science, 1996, 31(5) :1225~1251.
  • 4S M Rao and D R Wilton. Transient Scattering by Conducting Surfaces of Arbitrary Shape[J]. IEEE Trans. Antennas and Propagat., 1991, 39(1):56~61.
  • 5胡俊 聂在平.多层快速多极子方法中的树形算法[J].电波科学学报,1999,14:155-158.
  • 6D A Vechinski and S M Rao. A Stable Procedure to Calculate the Transient Scattering by Conducting Surfaces of Arbitrary Shape[J]. IEEE Trans. Antennas and Propagat., 1992, 40(6) :661~665.
  • 7B P Rynne and P D Smith. Stability of time marching algorithms for electric field integral equation[J]. Journal of Electromagnetic Waves and Applications. 1990, 4:1181~1205.
  • 8P J Davies. On the Stability of Time-Marching Schemes for the General Surface Electric-Field Integral Equation[J]. IEEE Trans. Antennas and Propagat., 1996, 44(11) :1467~1473.
  • 9B H Jung, T K Sarkar. Time-Domain Electric-Field Integral Equation with Central Finite Difference[J]. Microwave Opt. Tech. Letters. 2001, 31(6) :429 ~ 435.
  • 10S M Rao, D R Wilton, and A W Glisson. Electromagnetic Scattering by Surfaces of Arbitrary Shape[J]. IEEE Trans. Antennas and Propagat.. 1982, 30(3) :409~418.

共引文献11

同被引文献12

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部