期刊文献+

混合爬山算法设计布尔函数 被引量:1

Design of boolean functions using mixed hill climbing algorithms
下载PDF
导出
摘要 设计高非线性度的布尔函数,具有重要的密码学意义,应用智能爬山算法能有效改善布尔函数的非线性度.分析了布尔函数真值表的单点及两点改变与Walsh-Hadamard变换之间的关系.为提高寻优时的局部特性,将HillClimb1算法和HillClimb2算法有机融合,提出了"HillClimb1+2算法",该算法将一点爬山与两点爬山交替进行,只要还有优化的可能就继续执行该算法,有效的减少陷入局部最优的可能性.实验数据表明,与基本爬山算法相比,该算法进一步优化了布尔函数的非线性度,有效提高了求解的结果。 It is significant to design Boolean functions with high nonlinearity, and the nonlinearity of Boolean functions can be improved by using intelligent Hill-climbing algorithm. It is analyzed that the relationship between the Walsh- Hadamard transformation of Boolean functions and a single improvement and two points improvement. HillClimbl+2 algorithm is proposed to improve local property of finding optimal with combining HillClimbl with HillClimb2. This algorithm is not able to stop continuing until the optimal is found, and effectively decreases the probability of getting into local optimal. Experiences show that this algorithm can improve the nonlinearity of Boolean functions.
出处 《电子测量技术》 2008年第2期1-2,6,共3页 Electronic Measurement Technology
基金 国家自然科学基金项目(60673098) 北京市自然科学基金项目(4062025)资助
关键词 布尔函数 爬山算法 非线性度 Boolean functions hill climbing algorithm nonlinearity
  • 相关文献

参考文献5

  • 1MILLAN W, CLARK A, DAWSON E. Smart hill climbing finds better boolean functions[A]. Workshop on Selected Areas in Cryptology[C]. 1997:50-63.
  • 2李超,胡朋松,海昕.布尔函数设计中的爬山算法及其改进[J].通信学报,2007,28(3):130-133. 被引量:3
  • 3孟庆树,张焕国,王张宜,覃中平,彭文灵.Bent函数的演化设计[J].电子学报,2004,32(11):1901-1903. 被引量:16
  • 4BEAUCHAMP K G. Applications of walsh and related function[M]. Academic Press, 1984.
  • 5GLOVER F. Tabu Search: A tutorial[Z]. Interfaces, 1990,20(4): 74-94.

二级参考文献15

  • 1J a clark,J l Jacob,S stepney,S maitra,W Millan.Evolving boolean function satisfying multiple criteria[A].Indocrypt 2002[C].Berlin,Germany:Springer-Verlag,LNCS 2552,2002.246-259.
  • 2W Millan,A Clark,E Dawson.Smart hill climbing finds better boolean functions[A].Workshop on Selected Areas in Cryptology 1997 Workshop Record[C].Berlin,Germany:Springer-Verlag,1997.50-63.
  • 3O S Rothaus.On ''Bent'' functions[J].Journal of Combinatorial Theory ( A),1976,20:300-305.
  • 4K Nyberg.Perfect nonlinear S-boxes[A].Advances in Cryptology-Eurocrypt' 91[C].Berlin,Germany:Springer-Verlag,1992.378-386.
  • 5J F Dillon.Elementary Hadamard Difference Sets[D].USA:Unviversity of Maryland,1974.
  • 6C Carlet.Two new classes of bent functions[A].Advances in Cryptology-Eurocrypt '93[C].Berlin,Germany:Springer-Verlag,LNCS765,1994.77-101.
  • 7H dobbertin.Construction of Bent functions and balanced boolean functions with high non-linearity[A].Fast Software Encryption[C].Berlin,Germany:Springer-Verlag,LNCS 1008,1994.61-74.
  • 8K Nyberg.Constructions of Bent functions and difference sets[A].Advance in Cryptography-Eurocrypto'90[C].Berlin,Germany:Springer-Verlag,LNCS 473,1991.151-160.
  • 9C Carlet,P Sarkar.Spectral domain analysis of correlation immune and resilient boolean functions[J].Finite Fields and Applications (journal),2002,l8:120-130.
  • 10Anne Canteaut,Pascale Charpin.Decomposing bent functions[J].IEEE Transaction on Information Theory,2003,49(8):2004-2019.

共引文献17

同被引文献12

引证文献1

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部