期刊文献+

一种基于Contourlet变换和视觉感知特性的图像分割方法

An Image Segmentation Algorithm Based on Contourlet Transform and Vision Perception Information
下载PDF
导出
摘要 纹理图像的分割通常是通过分离块或移动块进行的,即以块的特征作为块或块中心像素的特征来进行,纹理边界和图像边界像素的误分率高.提出一种新的基于视觉感知特性邻域结构的纹理图像分割方法.该方法分为两步:首先用移动块产生中心像素的特征属性值;然后每个像素建立9个特殊邻域结构窗口,通过邻域结构中属性特征的一致性来确定像素的特征属性值.用此方法对30种纹理图像进行了分割实验,取得了满意的结果. Texture image segmentation is implemented by separating the image into distinct blocks or sliding blocks. The texture values were assigned to a pixel by using a window centered about that pixel. There are some considerable problems that can occur at the boundary of the image, the border between different textures in an image. This paper analyses those problems and propose a solutions that determined the pixel's feature value by using the vision perception information of pixel's neighborhood structure. This method includes two steps. Firstly, the pixels' feature value is assigned to a texture value of the window centered about it. And then we use the value of the highest homogeneity of nine special neighborhoods by the local structure as the pixel's. The analysis and experimental results on 30's synthesis texture image demonstrate the effectiveness of this algorithm.
出处 《微电子学与计算机》 CSCD 北大核心 2008年第3期67-70,共4页 Microelectronics & Computer
关键词 图像分割 纹理 视觉感知特性 邻域结构 image segmentation texture vision perception information neighborhood structure
  • 相关文献

参考文献5

  • 1Koss E J, Newman D F, Johnson T K, et al. Abdominal organ segmentation using texture transforms and a hopfield neural network[J]. IEEE Transactions on medical imaging, 1999,18(7):640-648.
  • 2Sridhar B, Phatak A, Chatterji G. Scene segmentation of natural images using texture measures and back propagation [ C] // Artificial Neural Net works. NASA, Tech. Memo. Brighton, UK, 1993:200-204.
  • 3王兆虎,刘芳,焦李成.一种基于视觉特性的遥感图像分割[J].计算机学报,2005,28(10):1686-1691. 被引量:10
  • 4李应岐,田军.一种SAR图象的多方向多尺度融合边缘检测方法[J].微电子学与计算机,2005,22(3):246-248. 被引量:2
  • 5Minh N Do, Martin Vetterli. The contourlet transform: an efficient directional multiresolution image representation [J]. IEEE Trans. Image Proc., 2005,14(2):2091-2106.

二级参考文献8

  • 1侯彪,刘芳,焦李成.基于小波变换的高分辨SAR港口目标自动分割[J].红外与毫米波学报,2002,21(5):385-389. 被引量:16
  • 2F T Ulaby, R K Moore, and A K Fung. Microwave Remote Sensing, Dedham, MA: Artech House, 1986,3.
  • 3郑南宁.计算机视觉与模式识别[Z].,1998.3..
  • 4R Touzi, A Lopes, and P Bousquet. Astatistical and Geometrical Edge Detector for SAR Images. IEEE Trans.Geosci. Remote Sensing, November 1988,26(6):762-773.
  • 5C J Oliver, D blacknell, and J C Holtzman. Optimum Edge Detection in SAR. in IEE Proc. Radar Sonar Naving.,February, 1996,143(1).
  • 6R Fjψrtoft, A Lopes, and P Marthon. Multiedge Detection in SAR Images. in Proc. ICASSP, Vol. 4, Munich, Germany, April 1997:2761-2764.
  • 7R Fjψrtoft, A Lopes, and P, Marthon. Optimal Detection in SLC Images with Correlated Speckle. in Proc. International Geoscience and Remote Sensing Symposium,(Seattle, Washington USA), July 1998: 6~10.
  • 8R Fjψrtoft, A Lopes, and P Marthon. Optimal Edge Detection and Localization in Complex SAR images with Correlated Speckle. IEEE Transactions on Geoscience and Remote Sensing, Septemnber 1999,37(5): 2272~2281.

共引文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部