期刊文献+

网络流量长相关特性的滑窗时变估计算法 被引量:2

A Long-Range Dependence Sliding Window Time-Varying Estimation Algorithm for Network Traffic
下载PDF
导出
摘要 网络流量在动态演进过程中呈现出长相关(LRD)特性,定量描述LRD特性是网络行为研究的重要问题之一.由于传统LRD估计算法采用全域求和平均,造成序列中突发信息损失,致使传统算法均不能在复杂条件下有效估计LRD.在引入时变Hurst指数函数的概念后,提出了时域滑窗时变Hurst(SWTV-H)估计算法.SWTV-H算法在某一分辨率水平上给出局域内Hurst指数的估计,并通过局域时移实现流量序列全域内LRD趋势的动态估计.分别用仿真以及真实网络流量数据对其有效性进行了验证,与传统算法的估计结果相比,SWTV-H算法能更准确估计LRD特性,且具有更好的鲁棒性. Long-range dependence (LRD) of network traffic is revealed in a dynamical evolution way, Thus, quantifying the LRD characteristics is one of the vital problems to study network behavior. Traditional LRD estimators can not give the accurate estimation under some complex conditions after seven type traditional LRD estimators are comprehensively evaluated in this paper, The main reason is that the traditional methods introduce the smoothness to traffic series in some degreedues to doing average within global domain. Consequently, some important features of network traffic such as burstiness and LRD are destroyed. A sliding window time-varying Hurst (SWTV-H) exponent estimation algorithm for LRD characteristics is proposed to improve the Hurst exponent estimating performance based on the concept of time-varying Hurst exponent induced. The SWTV-H algorithm can estimate the local Hurst exponent in some resolution ratio level, and provide a dynamic estimation of LRD trend of global behavior by shifting the local domain. The effectiveness of the SWTV-H algorithm is validated by the data of the artificial fractal Gaussian noise (fGn) series and the actual network traffic series. The results indicate that the SWTV-H algorithm is more accurate and reliable to estimate LRD characteristics compared with the traditional methods, and it has robust performance.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第3期436-442,共7页 Journal of Computer Research and Development
基金 国家“八六三”高技术研究发展计划基金项目(2003AA103510,2004AA103130,2005AA121210)
关键词 计算机网络 网络行为 长相关(LRD) HURST指数 鲁棒性 computer network network behavior long-range dependence (LRD) Hurst exponent robustness
  • 相关文献

参考文献13

  • 1W E Leland, M S Taqqu, W Willinger, et al. On the selfsimilar nature of Ethernet traffic [J]. IEEE/ACM Trans on Networking, 1994, 2(1): 1-15.
  • 2T Karagiannis, M Molle, M Faloutsos. Long-range dependence: Ten years of Internet traffic modeling [J]. IEEE Internet Computing, 2004, 8(5):57-64.
  • 3Muradtaqqu. Methods [OL]. http://math.bu.edu/people/ murad/methods/index, html, 2005-09.
  • 4William Stallings. High Speed Networks and Internets: Performance and Quality of Service. Second edition [M]. Englewood Cliffs, NJ: Prentice Hall, 2002. 241-247.
  • 5C K Peng, S V Buldyrev, M Simons, et al. Mosaic organization of DNA nucleotides [ J ]. Physical Review E, 1994, 49(2) : 1685-1689.
  • 6J Beran, R Sherman, M S Taqqu, et al. Long-range dependence in wariable-bit-rate video traffic [J ]. IEEE Trans on Communications, 1995, 43(2) : 1566-1579.
  • 7P Abry, D Veitch. Wavelet analysis of long range dependent traffic [J ]. IEEE Trans on Information Theory, 1998, 4( 1 ) : 2 -15.
  • 8M Krunz. On the limitations of the variance-time test for inference of long-range dependence [C]. IEEE INFOCOM' 2001. Anchorage, Alaska, 2001.
  • 9Thomas Karagiannis, Mart Molle, Michalis Faloutros, et al. A nonstationary Poisson view of lnternet traffic [C]. IEEE INFOCOM'04, Hong Kong, 2004.
  • 10赵慧,侯建荣,施伯乐.一种基于分形时变维数的非平稳时间序列相似性匹配方法[J].计算机学报,2005,28(2):227-231. 被引量:5

二级参考文献11

  • 1Chan Frank, Fu Wai-Chee. Efficient time series matching by wavelets.In: Proceedings of the 15th IEEE International Conference on Data Engineering, Sydney, Australia, 1999, 126~133.
  • 2Brockwell P.J. Time Series: Theory and Methods. New York: Springer-Verlag, 1991.
  • 3Wang K. Discovering patterns from large and dynamic sequential data. Journal of Intelligent Information Systems, 1997, 9(1): 8~33.
  • 4Kam P., Fu AWC. Discovering temporal patterns for interval-based events. In: Proceedings of the 2nd International Conference on Data Warehousing and Knowledge Discovering(DaWaK2000), London, UK, 2000, 317~326.
  • 5Daubechies Inrid. The wavelet transform: Time-frequency localization and signal analysis IEEE. Transactions on Information Theory, 1990, 36(5): 961~1005.
  • 6Agrawal Rakesh, Faloutsos Christos, Swami Arun. Efficient similarity search in sequence databases. In: Proceedings of the 4th Conference on Foundations of Data Organization and Algorithms, Chicago, Oct. 1993, 69~84.
  • 7Chen M.S., Han J.,Yu P.S. Data Mining: An overview from a database perspective. IEEE Transactions on Knowledge and Data Engineering,1996, 8(6): 866~883.
  • 8Wu Daniel, Agrawal Divyakant, Abbadi Amr EI, Singh Ambuj k, Smith Terence R. Efficient retrieval for browsing large image database. In: Proceedings Conference on Information and Knowledge Management,1996, 11~18.
  • 9Keogh Eamonn, Padhraic Smyth. A probabilistic approach to fast pattern matching in time series databases. In: Proceedings of the 3rd Conference on Knowledge Discovery in Database and Data Mining, Newportbeach, California, 1997.
  • 10侯建荣,宋国乡.小波分析在Hurst指数估值中的应用[J].西安电子科技大学学报,2002,29(1):115-118. 被引量:7

共引文献4

同被引文献4

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部