期刊文献+

多Agent动态影响图的近似计算方法 被引量:4

Approximate Computation of Multi-Agent Dynamic Influence Diagrams
下载PDF
导出
摘要 由于复杂系统具有高维性和不确定性常难以表示处理,因而知识表示和计算方法是复杂系统研究中的公开难题.当前,多Agent影响图不能建模动态环境和多Agent,马尔可夫决策过程难以表示A-gents之间结构关系的问题,因而提出一种用局部概率因式表示动态环境中多Agent之间关系的新决策模型——多Agent动态影响图(MADIDs).针对MADIDs模型的联合概率分布和联合效用函数在计算上的高维问题,研究该模型的近似计算方法.给出MADIDs概率结构部分的一种分层分解的分布近似方法,并通过对该近似方法的误差和复杂性的分析,给出一个可对近似分布的精度和复杂性进行均衡的函数δ(k);给出一种BP神经网络通过局部效用的学习来近似计算MADIDs的联合效用.在模型实例上的实验结果显示了MADIDs模型近似计算方法的有效性. Due to high dimension and uncertainty of the complex system, the complexity system is often hard to represent and process, and the knowledge representation and computation methods of complex systems are open hard problems in complex system research. At present, MAIDs can not model dynamic environment and it is difficult for multi-agent MDPs to represent structural relations among agents; so a multi-agent dynamic influence diagrams (MADIDs) model is given to representation relations among multiagents in dynamic environment by local factor probability form. The computation of joint probability distribution and joint utility function of MADIDs are a high dimension problem, so the approximate computation methods are researched. A distribution approximation method of hierarchical decomposition of probability structural MADIDs is studied; based on analysis of the complexity and the error of the distribution approximation method, a function δ(k) is introduced to establish equilibrium between precision and complexity of approximate distribution. Then a BP neural network is given to approximately compute utility structural MADIDs by learning local utility. Finally, given model instances, the experiment results show the validity of the approximation computation method of the MADIDs model.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第3期487-495,共9页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60575023) 安徽省自然科学基金项目(070412054 070412064)
关键词 影响图 多AGENT动态影响图 KL差分 联合树 EBK算法 influence diagram MADIDs KL-divergence junction tree EBK algorithm
  • 相关文献

参考文献16

  • 1吴志勇,蔡莲红.基于动态贝叶斯网络的音视频双模态说话人识别[J].计算机研究与发展,2006,43(3):470-475. 被引量:11
  • 2C Boutilier, D Poole. Computing optimal policies for partially observable decision processes using compact representations [ C]. AAAI-96, Protland, USA, 1996.
  • 3C Boutilier. Sequential optimality and coordination in multiagent systems [C]. San Francisco: Morgan Kaufmann, IJCAI- 99, 1999. 478-485.
  • 4A G Barto, Mahadevan. Recent advances in hierarchical reinforcement learning (discrete event dynamic systems)[J]. Theory and Applications, 2003, 13(1/2): 41-77.
  • 5D Koller, B Milch. Multi-agent influence diagrams for representing and .solving games [C]. IJCAI, Seattle, USA, 2001.
  • 6Y Gal, A Pfeffer. A language for modeling agents decision making processes in games [C]. AAMAS-2nd, Nekbiyrbe, Ausevier, 2003.
  • 7A Dielmann, S Renals. Dynamic Bayesian networks for meeting structuring [C]. IEEE Int'l Conf on Acoustics, Speech, and Signal Processing, ICASSP' 04, Res Edinborgh University, 2004.
  • 8M Frick, M Groiie. Deciding first-order properties of locally tree-decomposable graphs [J]. Journal of the ACM, 2001, 48 (6): 1184-1206.
  • 9S Kirshner, P Smyth. Conditional Chow-Liu tree structures for modeling discrete-valued vector time series [R]. School of Information and Computer Science, University of California, Tech Rep: 04-04, 2004.
  • 10F R Bach, M I Jordan. Tin junction trees [C]. Advances in Neural Information Processing Systems, Vancouver, Canada, 2002.

二级参考文献9

  • 1C. C. Chibelushi, F. Deravi, J. S. D. Mason. A review of speech-based bimodal recognition, IEEE Trans. Multimedia,2002, 4(1): 23-37.
  • 2S. Dupont, J. Luettin. Audiovisual .speech modeling for continuous speech reeognition, IEEE Trans. Multimedia, 2000, 2(3): 141-151.
  • 3A. Nefian, Luhong Liang, Xiaobo Pi, et al. A coupled HMM for audio visual speech recognition. In: Int'l Conf. Acoustics, Speech and Signal Processing (ICASSP2002) . Piscataway, N J: IEEE Press, 2002. 2013-2016.
  • 4A. Nefian, Luhong Liang, Tieyan Fu, et al. A Bayesian approach to audlo-visual speaker identification. Inz Proe. 4th Int'l Conf. Audio-and Video-based Biometrie Person Authentication(AVBPA2003). Berlin: Springer, 2003. 761-769.
  • 5G. G, Zweig, Speech recognition with dynamic Bayesian networks: [Ph. D, dissertation]. Berkeley: U, C. Berkeley,1998.
  • 6J. N. Gowdy, A. Subramanya, C. Bartels, et al. DBN based multi-stream models for audio visual speech recognition. In: Int'l Conf. Acoustics, Speech and Signal Processing (ICASSP2004).Piscataway, NJ: IEEE Press, 2004. 993-996.
  • 7T. Chen, Audiovisual speech processing. IEEE Trans. Signal Processing, 2001, 18 ( 1 ) : 9-21.
  • 8K. Murphy. The Bayes net toolbox for Matlab. http://www. ai. mit. edu/-- murphyk/Scftware/BNT/bnt, html, 2004-11 -22.
  • 9王志明,蔡莲红,艾海舟.基于支持向量回归的唇动参数预测[J].计算机研究与发展,2003,40(11):1561-1565. 被引量:7

共引文献10

同被引文献61

引证文献4

二级引证文献6

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部