期刊文献+

运动串:一种用于行为分割的运动捕获数据表示方法 被引量:10

Motion String:A Motion Capture Data Representation for Behavior Segmentation
下载PDF
导出
摘要 运动数据的行为分割是运动捕获过程中非常重要的一环.针对现有分割方法的不足,提出了一种可用于行为分割的运动数据表示方法,并基于该表示实现了数据的行为分割.运动数据经过谱聚类(spectral clustering)、时序恢复和最大值滤波法(max filtering)后生成一个字符串,该字符串称为运动串,然后采用后缀树(suffix tree)分析运动串,提取出所有静态子串和周期子串,对这些子串进行行为标注,从而实现运动数据的行为分割.实验表明,基于运动串的分割具有较好的鲁棒性和分割效果. Currently, motion data are often stored in small clips for being used in animations and games. So the behavior segmentation of motion data is a key problem in the process of motion capture. In order to segment the motion data into small clips, a new symbolic representation of motion capture data is introduced and a behavior segmentation approach based on the representation is explored. The high dimensional motion capture data are first mapped on a low dimensional space, based on spectral clustering and sliding-window distance extending weighted quaternion distances. Then the low dimensional data can be represented by a character string, called motion string (MS), and by temporal reverting and max filtering. Because MS converts motion data into a character string, lots of string analysis methods can be used for motion processing. In addition to motion segmentation, motion string may be widely applied in various other areas such as motion retrieval and motion compression. Suffix trees are used to segment the motion data by extracting all static substrings and periodic substrings from MS. Each substring represents a behavior segment, and the motion data are segmented into distinct behavior segments by annotating these substrings. In the experiments, MS is proved to be a powerful concept for motion segmentation, providing the good performance.
出处 《计算机研究与发展》 EI CSCD 北大核心 2008年第3期527-534,共8页 Journal of Computer Research and Development
基金 国家"八六三"高技术研究发展计划基金项目(2004AA115130) 国家"九七三"重点基础研究发展规划基金项目(2002CB312105) 国家自然科学基金重点项目(60533070)
关键词 运动捕获 运动编辑 运动分割 运动串 滑窗距离 谱聚类 motion capture motion edit motion segmentation motion string sliding-window distance spectral clustering
  • 相关文献

参考文献21

  • 1L Kovar, M Gleicher, F Pighin. Motion graphs [J]. ACM Trans on Graphics, 2002, 21(3): 473-482.
  • 2O Arikan, D A Forsyth. Interactive motion generation from examples [J]. ACM Trans on Graphics, 2002, 21(3) : 483- 490.
  • 3O Arikan. Compression of motion capture database [J]. ACM Trans on Graphics, 2006, 25(3): 890-897.
  • 4M Muller, T Roder, M Clausen. Efficient content-based retrieval of motion capture data [J]. ACM Trans on Graphics, 2005, 24(3):677-685.
  • 5K Forbes, E Fiume. An efficient search algorithm for motion data using weighted PCA [C]. In: Proc of the ACM SIGGRAPH/Eurographics Syrup on Computer Animation. New York: ACM Press, 2005. 67-76.
  • 6王天树,郑南宁,徐迎庆,沈向洋.人体运动非监督聚类分析[J].软件学报,2003,14(2):209-214. 被引量:8
  • 7J Barbic A Safonova, J Y Pan, et al. Segmenting motion capture data into distinct behaviors [C]. The 2004 Conf on Graphics Interface (GI'04), Waterloo, 2004.
  • 8R Souvenir, R Pless. Manifold Clustering [C]. In: Proc of the 10th IEEE Int'l Conf on Computer Vision ( ICCV' 05) . Los Alamitos: IEEE Computer Society Press, 2005. 648-653.
  • 9O C Jenkins, M J Mataric. A spatio-temporal extension to isomap nonlinear dimension reduction [C]. In: Proc of the 21st Int'l Conf on Machine Learning (ICML' 04). New York: ACM Press, 2004.
  • 10O C Jenkins, M J Mataric. Automated derivation of behavior vocabularies for autonomous humanoid motion [C]. In: Proc of the 2nd Int'l Joint Conf on Autonomous Agents and Multiagent Systems. New York: ACM Press, 2003. 225-232.

二级参考文献55

  • 1张振跃,查宏远.线性低秩逼近与非线性降维[J].中国科学(A辑),2005,35(3):273-285. 被引量:8
  • 2杨剑,李伏欣,王珏.一种改进的局部切空间排列算法[J].软件学报,2005,16(9):1584-1590. 被引量:36
  • 3[1]Gavria DM. The visual analysis of human movement: a suvey. Computer vision and Image Understanding, 1999,73(1):82~98.
  • 4[2]Bregler C. Learning and recognizing human dynamics in video sequences. In: Medioni G, ed. Proceedings of the IEEE Computer Vision and Pattern Recognition'97. Piscataway: IEEE Press, 1997. 568~574.
  • 5[3]Yang J, Xu Y, Chen CS. Human action learning via hidden Markov model. IEEE Transactions on Systems Man and Cybernetics, 1997,27(1):34~44.
  • 6[4]Starner T, Pentland A. Visual recognition of american language using hidden Markov models. In: Bichsel M, ed. Proceedings of the International Workshop on Automatic Face and Gesture Recognition. MultiMedia Laboratory, University of Zurich, 1995. 189~194.
  • 7[5]Rissanen J. A universal prior for integers and estimation by minimum description length. Annals of Statistics,1983,11:417~431.
  • 8[6]Clarkson B, Pentland A. Unsupervised clustering of ambulatory audio and video. In: Rodriquze J, ed. Proceedings of the ICASSP'99. Madison: Omini Press, 1999. 3037~3040
  • 9[7]Galata A, Johnson N, Hogg D. Learning structured behavior models using variable length hidden Markov models. In: Werner B, ed. IEEE International Workshop on Modeling people. Piscataway: IEEE Press, 1999. 95~101.
  • 10[8]Walter M, Psarrou A, Gong S. An incremental approach towards automatic model acquisition for human gesture recognition. In:Young DC, ed. Proceedings of the IEEE International Workshop on Human Motion. Bellingham: Applied Digital Imaging, 2000. 39~46.

共引文献82

同被引文献110

引证文献10

二级引证文献50

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部