期刊文献+

小样本条件下基于全局和局部特征融合的人脸识别 被引量:3

Global and Local Feature Extraction Based Face Recognition in Small Samples
下载PDF
导出
摘要 针对线性判别分析的小样本空间问题,提出了一种基于类向量的融合全局和局部特征的人脸识别算法。首先,提取人脸的全局特征;然后将人脸分割成6个关键部分,并用一种新的基于Gabor小波的方法提取特征;其次,将全局和局部特征融合,得出样本的特征向量;再次,得出每类样本的类向量并据此得出一种新的投影准则;最后,将类向量和试验样本分别进行投影,根据其欧氏距离的大小得出试验人脸的最终类。试验表明本文算法不仅能有效解决小样本空间问题,而且计算速度快,识别率高,应用前景良好。 A new algorithm of face recognition based on global and local feature extraction was proposed to solve small samples in LDA. Firstly,the global feature was extracted and the feature of six key parts test face divided was extracted through Gabor wavelet. Then, global and local features were fused to get eigenvector of samples. Class vector of each kind of samples was calculated, and accord- ing to which, a new project rule was gotten. In the end,class vector and test samples were projected separately. The final class test face belonged to was declared by Euclidean distance. The experiments show that the proposed algorithm can deal with small samples problem effectively, and is fast, high recognition rate.
出处 《信号处理》 CSCD 北大核心 2008年第1期49-53,共5页 Journal of Signal Processing
关键词 小样本条件 人脸识别 特征提取 GABOR小波 线性判别分析 Small Samples face recognition feature extraction Gabor wavelet LDA
  • 相关文献

参考文献9

  • 1Chellappa R. , Wilson C. L. , Sirohey S. , Human and machine recognition of faces:A survey[ J]. Proceedings of the IEEE, 1995,83 (5) :705 - 741.
  • 2Belhumeur P. N. , Hespanha J. P, Kriegman D. J.. Eiegnfaces vs. fisherfaces: Recognition using class specific linear projection [ J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997,19 (7) : 711 - 720.
  • 3Swets D., Weng J.. Using discriminant eigenfeatures for image retrieval [ J ]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996,18 (8) : 831 - 836.
  • 4Turk M. , Pentland A.. Eigenfaces for Recognition [ J ]. Journal of Cognitive Neuroscience, 1991,3 ( 1 ) :71 - 86.
  • 5Yu H. , Yang J.. A direct LDA algorithm for high dimensional data with application to face recognition [ J ]. Journal of Pattern Recognition ,2001,34(10) :2067-2070.
  • 6余冰,金连甫,陈平.利用标准化LDA进行人脸识别[J].计算机辅助设计与图形学学报,2003,15(3):302-306. 被引量:22
  • 7王蕴红,范伟,谭铁牛.融合全局与局部特征的子空间人脸识别算法[J].计算机学报,2005,28(10):1657-1663. 被引量:41
  • 8Bing Y. ,ianfu J. L. ,Ping C.. A new LDA-based method for face recognition [A ], Proc. 16th Int'l Conf. Pattern Recognition. 2002,1 : 168 - 171.
  • 9Zhao W. , Chellappa R. , Rosenfeld A. , Phillips P. J.. Face recognition : A literature survey [ J ]. Computer Vision Laboratory. University of Maryland,Technical Reports CAR-TR-948,2000.

二级参考文献19

  • 1Martinez A., Kak A.. PCA versus LDA. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2001,23(2): 228~233.
  • 2Pentland A., Moghaddam B., Starner. View-based and modular eigenspaces for face recognition. In: Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, 1994, 84~91.
  • 3Swets D.L., Weng J.. Using discriminant eigenfeatures for image retrieval. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1996, 18(8): 831~836.
  • 4Kirby M., Sirovich L.. Application of the Karhunen-Loeve procedure for the characterization of human faces. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1990, 12(1): 103~108.
  • 5Turk M., Pentland A.. Eigenfaces for recognition. Journal of Cognitive Neuroscience, 1991,3(1): 71~86.
  • 6Belhumeur V., Hespanda J., Kiregeman D.. Eigenfaces vs. fisherfaces: Recognition using class specific linear projection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 711~720.
  • 7Bartlett M.S., Movellan J.R., Sejnowski T.J.. Face recognition by independent component analysis. IEEE Transactions on Neural Networks, 2002, 13(6): 1450~1464.
  • 8Moghaddam B.. Principal manifolds and probabilistic subspaces for visual recognition. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2002, 24(6): 780~788.
  • 9Kim K.I., Jung K., Kim H.J.. Face recognition using kernel principal component analysis. IEEE Signal Processing Letters, 2002, 9(2): 40~42.
  • 10Mika S., Ratsch G., Weston J., Scholkopf B., Muller K.. Fisher discriminant analysis with kernels. In: Proceedings of IEEE Workshop on Neural Network for Signal Processing, Madison, Wisconsin, USA, 1999, 9: 41~48.

共引文献61

同被引文献24

引证文献3

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部