期刊文献+

污水处理厂机器学习综合评价 被引量:1

Machine Learning Comprehensive Assessment of Sewage Disposal Plants
下载PDF
导出
摘要 对污水处理厂的运营情况进行综合评价,既可以找出现有污水处理厂存在的不足,指明改进方向和目标,又可为今后建立新厂提供参考和借鉴。通过指标体系和随机线性评价模型层次分析法(analytical hierarchy process,AHP)权重,得到机器学习评价样本;采用随机森林、随机梯度Boosting和支持向量等六种机器学习方法和六种评价结果的平均值,对天津市14家污水处理厂运营情况进行排名。 It is beneficial to comprehensively assess operation level of sewage disposal plants. The existing deficiency can be exposed, and the ameliorative direction and objective can also be shown. Based on indexes system, machine learning samples were designed in linear evaluation model by choosing analytical hierarchy process (AHP) weights at random. Fourteen sewage disposal plants in Tianjin were assessed by six machine learning algorithms, such as random forest, stochastic gradient boosting, support vector machine, etc. The final order were calculated according to the on average value of the 6 algorithms.
出处 《天津大学学报(社会科学版)》 CSSCI 2008年第2期118-121,共4页 Journal of Tianjin University:Social Sciences
基金 天津市科技发展计划基金资助项目(06YFGZGX05400)
关键词 污水处理 综合评价 随机森林 随机梯度Boosting sewage disposal comprehensive assessment random forest stochastic gradient boosting
  • 相关文献

参考文献10

  • 1李栋,王洪礼,李胜朋.市政交通项目综合评价[J].长安大学学报(社会科学版),2006,8(1):43-46. 被引量:11
  • 2李栋,王洪礼,李胜朋.综合评价法的统一化研究[J].天津大学学报(社会科学版),2006,8(5):373-375. 被引量:14
  • 3严光财,方新安,马朝霞.以神经网络建立武汉地区医院建筑节能综合评价体系[J].数理医药学杂志,2005,18(1):85-86. 被引量:3
  • 4Vapnik V. The Nature of Staristical Learning Theory [ M ]. New York: Springer-Verlag, 1995.
  • 5李栋,王洪礼,杜忠晓,王长江,陈炳林.城市生活用水量的支持向量回归预测[J].天津大学学报(社会科学版),2006,8(1):64-67. 被引量:21
  • 6Matsumoto M, Nishimura T. Mersenne twister: A 623-dimensionally equidistributed uniform pseudo-random number generator [J]. ACM Transactions on Modeling and Computer Simulation, 1998, 8(1):3-30.
  • 7Breiman L. Random forests[J]. Machine Learning, 2001, 45 (1) :5-32.
  • 8Friedman J H. Stochastic gradient boosting[J]. Computational Statistics and Data Analysis, 2002, 38(4) :367-378.
  • 9Freidman J H. Multivariate adaptive regression splines(with discussion)[J]. Annals of Statistics, 1991,19: 1-141.
  • 10Winkler R L, Makridakis S. The combination of forecasts[J]. Journal of the Royal Statistical Society Series A ( General ), 1983, 146(2) : 150-157.

二级参考文献25

共引文献42

同被引文献11

  • 1李栋,王洪礼,杜忠晓,王长江,陈炳林.城市生活用水量的支持向量回归预测[J].天津大学学报(社会科学版),2006,8(1):64-67. 被引量:21
  • 2Hinich M.Testing for Gaussianity and linearity of a stationary time series[J].Journal of Time Series Analysis,1982,3(3):169-176.
  • 3Theiler J,Eubank S,Longtin A,et al.Testing for nonlinearity in time series:The method of surrogate data[J].Physical D Nonlinear Phenomena,1992,58:77-94.
  • 4White H.An additional hidden unit test for neglected nonlinearity in multilayer feed-forward networks[C] //Proceedings of the International Joint Conference on Neural Networks.New York:IEEE Press,1989(2):451-455.
  • 5Schreiber T,Schmitz A.Improved surrogate data for nonlinearity tests[J].Physical Review Letter,1996,77(4):635-638.
  • 6Teraesvirta T,Lin C F,Granger C W J.Power of the Neural Network Linearity Test[J].Journal of Time Series Analysis,1993,14:209-220.
  • 7Rosenstein M T,Collins J J,Luca C J D.A practical method for calculating largest Lyapunov exponents from small data sets[J].Physical D,1993,65:117-134.
  • 8Nychka D,Ellner S,Gallant A,et al.Finding chaos in noisy systems[J].Journal of Royal Statistical Society B,1992,54(2):399-426.
  • 9Brock W A,Dechert W D,Scheinkman J A.A Test for Independence Based on the Correlation Dimension[R].Madison:University of Wisconsin-Madison,1986.
  • 10Ljung G M,Box G E P.On a measure of lack of fit in time series models[J].Biometrika,1978,65:553-564.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部