期刊文献+

基于均匀设计的特征选择方法 被引量:1

Feature Selection Based on Uniform Design
下载PDF
导出
摘要 针对模式识别系统中有效特征的选择问题,采用支持向量机作为分类器,提出了基于均匀设计的特征选择方法.根据均匀设计表的结构及采用的数据集进行训练、测试,最后检验所选的特征子集.实验结果表明,该方法能够有效地去除数据集的冗余特征,取得比使用特征全集更好的分类性能. For the feature selection in pattern recognition system, a method based on uniform design, which uses support vector machine as a classifier, is proposed. The experiment is carried out according to the structure of uniform design table and the feature numbers of datasets, and finally the results indicate that the method is efficient in discarding the redundant features and obtaining high classification than that on the entire datasets.
出处 《哈尔滨理工大学学报》 CAS 2008年第1期42-45,共4页 Journal of Harbin University of Science and Technology
基金 国家自然科学基金(60575036) 哈尔滨市科技创新人才研究专项资金项目(2007RFXXG023) 哈尔滨理工大学优秀拔尖创新人才培养基金(20070105)
关键词 特征选择 均匀设计 支持向量机 模式分类 feature selection uniform design support vector machine pattern classification
  • 相关文献

参考文献3

  • 1BATTITI R. Using Mutual Information for Selecting Features in Supervised Neural Network Learning [ J ]. IEEE Trans. Neural Networks, 1994, 5(4) : 537 -550.
  • 2KWAK N, CHOI Chong-Ho. Input Feature Selection for Classification Problems[J]. IEEE Trans. Neural Networks, 2002, 13 (1) :143 -157.
  • 3张学工.统计学习理论的本质(第二版)[M].北京:清华大学出版社,1999.

同被引文献11

  • 1纪玲玲,林振山,王昌雨,张志华.最小二乘回归支持向量机对非线性时间序列预测的试验分析[J].解放军理工大学学报(自然科学版),2009,10(1):92-97. 被引量:16
  • 2崔万照,朱长纯,保文星,刘君华.混沌时间序列的支持向量机预测[J].物理学报,2004,53(10):3303-3310. 被引量:99
  • 3Hamid Yazdani, Ali Fallah,Fatemeh Khamseh Nezhad. RBF Network-Based Chaotic Time Series Prediction and Its Application in IRANstock market [J]. Life Science Journal, 2013,10(7) :326 -230.
  • 4Chen Diyi, Han Wenting. Prediction of multivariate chaotic time seriesvia radial basis function neural network [ J]. Mathematics, 2013 , 18(4):23 -33.
  • 5Xiang Zheng,Zhang Taiyi,Sun Jiancheng. Modeling of chaotic systemswith multi-wavelet transform combined with recurrent least squares sup-port vector machines [ J ]. International Journal of Wavelets, Multi-reso-lution and Information Processing,2010,5(1) :1 - 13.
  • 6Ilhan Ilhan, Yunus Emre Goktepe,Sirzat Kahramanli. A genetic algo-rithm-support vector machine method for selecting tag single nucleotidepolymorphisms [ J ]. International Journal of Innovative Computing,2013,9(2):525 -541.
  • 7Xiang Changsheng,Qu Peixin,Qu Xilong. A chaotic time series forecas-ting model based on parameters simultaneous optimization algorithm[J]. Journal of Information & Computational Science,2013,15(10) :1-14.
  • 8张淑清,贾健,高敏,韩叙.混沌时间序列重构相空间参数选取研究[J].物理学报,2010,59(3):1576-1582. 被引量:86
  • 9张金良,谭忠富.混沌时间序列的混合预测方法[J].系统工程理论与实践,2013,33(3):763-769. 被引量:15
  • 10潘玉民,邓永红,张全柱.基于QPSO-FNN的混沌时间序列预测[J].计算机应用与软件,2013,30(8):91-94. 被引量:3

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部