期刊文献+

超空间可缩性

Contractibility of in Hyperspaces
下载PDF
导出
摘要 对于一个连续统X,在其上建立超空间Fn(X)={AX:1≤|A|≤n},并在其上建立两种映射φp:Fn(X)→Fn(p,X)和ΨB:Fn(X)→Fn+m(X),给出了φp和ψB是形变收缩映射的充分必要条件以及他们的等价命题. Let X be a continuum, Author define a hyperspaces Fn(X) ={A belong to X: 1 ≤ |A| ≤n}, on X. Moreover, consider the mapping φp:Fn(X)→Fn(p,X)和ΨB:Fn(X)→Fn+m(X), we find necessary and sufficient conditions under which φp and ΨB are deformation retraction and give some equivalent conditions of them.
出处 《贵州大学学报(自然科学版)》 2008年第1期14-16,共3页 Journal of Guizhou University:Natural Sciences
基金 成都理工大学学生课外科技立项基金项目
关键词 超空间 收缩映射 形变收缩映射 可缩空间 Hyperspaces Deformation retraction Strong deformation retraction Contractible spaces.
  • 相关文献

参考文献7

  • 1PELLICER-COVARRUBIAS P. Retractions in hyperspaces [ J]. Topology Appl1. 2004 , 135:23577-291.
  • 2MILL J V. Infinite-Dimensional Topology , Prerequisites and Introduction [ M ]. Elsevier Sci : North-Holland Math. Library 43 Publ. B . V. Amsterdam, 1989.
  • 3IILLANES A, NADER S B. Hyperspaces : Fundamentals and Recent Advances[ M ]. New York : Marcel Dekker, 1999.
  • 4NADLER S B. Hyperspaees of sets, A text with research questions[ M ]. New York and Basel :Marcel Dekker, 1978.
  • 5ENGELKING R. General Topology [ M]. Revised and Completed edition. Berlin:Heldermahn, 1989.
  • 6MILL J V. The Infinlte-Dimensional Topology of Function Spaces [ M ]. Elsevier Sci: North-Holland Math. Library 64 Publ. B . Amsterdam, 2001.
  • 7JANUSZ J, Charatonik. Pellicer-Covarrubias P. Retractions and contractibility in hyperspaces [ J ]. Topology Appl. 2007, 154:333 - 338.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部