摘要
为了克服Moore-Spence系统的计算复杂性,通过引入辅助方程形成扩展的Moore-Spence系统,得到一种求解Moore-Spence扩展系统的矩阵降阶新算法.该算法可大幅度降低系数矩阵的阶数,解决了Moore-Spence方程高维数求解的困难.算例仿真结果表明,该方法对于求解微分代数电力系统模型的鞍结分岔点是行之有效的.
To overcome the complexity caused by Moore-Spence system in computation, by introducing an auxiliary equation to form an extended Moore-Spence system, an efficient matrix reduction technique is derived. The high dimensionality of Jacobian matrix can thus be reduced and the complexity involved in matrix factorization can be simplified. The simulation results show that the method is efficient and applicable to compute the saddle-node bifurcation points of the differential-algebraic power system model.
出处
《控制与决策》
EI
CSCD
北大核心
2008年第3期310-314,共5页
Control and Decision
基金
国家自然科学基金项目(60574011)
辽宁省普通高校学科带头人基金项目(124210)