期刊文献+

基于Moore-Spence扩展系统鞍结分岔点的降阶新算法 被引量:1

Extended Moore-Spence system based direct method for computing saddle-node bifurcation points
下载PDF
导出
摘要 为了克服Moore-Spence系统的计算复杂性,通过引入辅助方程形成扩展的Moore-Spence系统,得到一种求解Moore-Spence扩展系统的矩阵降阶新算法.该算法可大幅度降低系数矩阵的阶数,解决了Moore-Spence方程高维数求解的困难.算例仿真结果表明,该方法对于求解微分代数电力系统模型的鞍结分岔点是行之有效的. To overcome the complexity caused by Moore-Spence system in computation, by introducing an auxiliary equation to form an extended Moore-Spence system, an efficient matrix reduction technique is derived. The high dimensionality of Jacobian matrix can thus be reduced and the complexity involved in matrix factorization can be simplified. The simulation results show that the method is efficient and applicable to compute the saddle-node bifurcation points of the differential-algebraic power system model.
出处 《控制与决策》 EI CSCD 北大核心 2008年第3期310-314,共5页 Control and Decision
基金 国家自然科学基金项目(60574011) 辽宁省普通高校学科带头人基金项目(124210)
关键词 电力系统 Moore-Spence系统 微分代数方程 鞍结分岔 Power system Moore-Spence system Differential-algebraic equation Saddle-node bifurcation
  • 相关文献

参考文献13

二级参考文献87

共引文献153

同被引文献16

  • 1KUNDUR P. Power System Stability and Control [M]. New York: McGraw-hill, 1993.
  • 2ARONOVICH G V, KARTVELISHVILI N A. Application of Sta- bility Theory to Static and Dynamic Stability Problems of Power Systems [C]. Proceedings of the Second All-union Conference Theoretical and Applied Mechanics, 1965.
  • 3KWATNY H G, PASRIJA A K, et al. Static Bifurcation in Ele- ctric Power Networks: Loss of Steady State Stability and Voltage Collapse[J]. IEEE Trans. CAS, 1986, 33 (10) : 981-991.
  • 4SEYDEL R. From Equilibrium to Chaos, Practical Bifurcation and Stability Analysis[M]. Elsevier Science Publishing, 1988.
  • 5FLATABO N, OGNEDAL R, CAR1SEN. Voltage Stability Cond- ition in a Power Transmission System Calculated by Sensitity Met- hods[J]. IEEE Trans on Power Systems, 1990, 5 (4) : 1286-1293.
  • 6KWATNY H G, FISCHL R F, NWANKPA C O. Local Bifurcation in Power Systems: Theory, Computation, and Application[J]. Pr- oceedings of the IEEE, 1995, 83 (11) : 1456-1482.
  • 7CANIZARES C A, ALVARADO F L. Point of Collapse and Con- tinuation Methods for Large AC/DC Systems[J]. IEEE Transactions on Power Systems, 1993, 8 (1): 1-8.
  • 8IBA K, SUZUO H, EGAWA M, et al. Calculation of Critical Lo- ading Condition With Nose Curve Using Homotopy Continuation Method[J]. IEEE Transactions on Power Systems, 1991, 6 (2) : 584-593.
  • 9AN Yi-chun, DUAN Xiao-dong, ZHANG Qing-ling. Extended Moore-spence Equations based Reduced Method for Computing Bifurcation Points of Power Systems[C]. 7th World Congress of In- ternational Federation of Automatic Control, 2008.
  • 10AJJARAPU V A, LEE B. Bifurcation Theory and Its Application to Nonlinear Dynamical Phenomenal in an Electrical Power System[J]. IEEE Trans. on Power Systems, 1992 (7) : 424-431.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部