摘要
对于一类具有Markov跳变参数的双线性离散随机系统,研究其饱和执行器问题.分别采用一般二次型Lyapunov函数、饱和关联Lyapunov函数进行系统随机稳定性分析,以椭圆不变集构造随机稳定域,提出两种依赖于模态跳变率的饱和状态控制器设计方法,两种方法均以线性矩阵不等式的形式给出.
Actuator saturation problems are discussed for a class of bilinear stochastic discrete-time systems with Markov jump parameters. The stochastic stability is respectively investigated by using general quadratic Lyapunov function and saturation-dependent Lyapunov function. A set of mode-dependent ellipsoid invariant sets are introduced to construct the stochastic stability region. Two design methods of saturation controller are presented, which dependent on the mode transition rate matrix. All the results are provided in the form of linear matrix inequality.
出处
《控制与决策》
EI
CSCD
北大核心
2008年第3期349-352,共4页
Control and Decision
基金
国家自然科学基金项目(60574001)
新世纪优秀人才支持计划项目(NCET-05-0485)
江南大学创新团队发展计划项目
关键词
双线性系统
跳变系统
饱和执行器
椭圆不变集
随机稳定性
Bilinear systems
Jump systems
Actuator saturations Ellipsoid invariant set
Stochastic stability