期刊文献+

双肋式微型气动阀的数值计算与实验 被引量:1

Numerical Simulation and Experiment on Two-riblet Micro Aerodynamic Valve
下载PDF
导出
摘要 针对现有微型三角阀效率低的问题,提出双肋式气动阀这一新型微阀,通过两级带圆弧过渡的收敛形肋条,在减小正向气流压力损失的同时,引导逆向气流分为3股后再呈“Y”形汇聚,产生强烈的相互撞击而抵消部分动能,从而减小逆向流量以提高效率。通过数值计算对双肋式气动阀的作用原理进行了分析与验证;加工了特征尺寸为1 mm的三角阀、梯形阀与双肋阀实验件,并设计了相应的实验方案,在微流体实验平台上进行了对比实验。结果表明双肋阀能大幅提高效率:对不可压流,双肋阀可将效率从普通阀的2%-3%提升至14%左右;对可压流,双肋阀能将效率从2%提升至约13%。 The two-riblet micro aerodynamic valve is presented in this article to solve the low-efficiency problem of the micro triangular valve. Based on two-stage contractive riblets with transition arc, the two-riblet aerodynamic valve reduces the pressure loss of the airflow in the positive direction, and divides the airflow in the negative direction into three currents. The three currents converge in "Y" shape afterwards, collide with each other intensely and then dissipate some kinetic energy, leading to the reduction of mass flow rate in the negative direction and the increase of the valve efficiency. The working principle of the two-riblet aerodynamic valve is studied and testified by numerical simulation. The triangular, trapeziform and two-riblet aerodynamic valve samples with a feature size of 1 mm are fabricated by means of wire-electron discharge machining and EDM. A new experiment method is designed and experimental studies are carried out on micro flow testing platform. The results show that the two-riblet aerodynamic valve improves efficiency remarkably: under incompressible condition, the efficiencies of the triangular and trapeziform valves are around 2 %-3 %, and that of the two-riblet aerodynamic valve is about 14% ; under compressible condition, the two-riblet aerodynamic valve enhances the efficiency to 13% as compared with 2% of the other two valves.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第2期267-273,共7页 Acta Aeronautica et Astronautica Sinica
关键词 流场主动控制 双肋式气动阀 微阀 微型射流器 微电子机械系统 active flow control two-riblet aerodynamic valve micro valve micro jet MEMS
  • 相关文献

参考文献11

  • 1Bratter R L. Commercial success in the MEMS marketplace[C]//Proceedings of 2000 IEEE/LEOS International Conference on Optical MEMS. Kauai: IEEE,2000:29- 30.
  • 2Amato I. Micromachines: fomenting a revolution, in miniature[J].Science, 1998, 282: 402-405.
  • 3McMichael J M. Progress and prospects for active flow control using microfabricated electromechanical systems (MEMS)[R]. AIAA-96-0306, 1996.
  • 4Davidson B J, Riley N. Jets induced by oscillatory motion[J].J Fluid Mech, 1972, 53: 287-303.
  • 5Smith B L, Glezer A. The formation and evolution of synthetic jets[J].Phys Fluids, 1998, 10(9) : 2281-2297.
  • 6Tan C S, Breuer K, Corke T, et al. MEMS-based control for air-breathing propulsion [R]. ADA389628, Cambridge: MIT Gas Turbine Lab, 2001.
  • 7Washburn A E, Amitay M. Active flow control on the stingray UAV:physical mechanisms [R]. AIAA-2004-0745, 2004.
  • 8黄国平,王鑫,梁德旺.肋条式微型无阀泵:中国,ZL200610038272.6[P].2006-08-02.
  • 9Tsai J H, Lin L. A thermal-bubble-actuated micronozzle-diffuser pump[J].J Microelectromech Systems, 2002,11(6):665-671.
  • 10Schabmueller C G J, Koch M, Mokhtari M E, et al. Selfaligning gas/liquid micropump[J].J Micromech Microeng, 2002, 12: 420-424.

同被引文献23

  • 1杜民,莫昱,姚晓先.射流管式气动舵机分析方法的研究[J].战术导弹控制技术,2006(3):95-98. 被引量:3
  • 2蔡茂林,香川利春.气动系统的能量消耗评价体系及能量损失分析[J].机械工程学报,2007,43(9):69-74. 被引量:60
  • 3Shearer J L. Study of pneumatic processes in the continu- ous control of motion with compressed air (Part I, II)J]. Transactions of the ASME, 1956, 78: 233-249.
  • 4Henri P D, Hollerbach J M, Nahvi A. An analytical and experimental investigation of a jet pipe controlled electro- pneumatic actuator[J]. IEEE Transactions on Robotics and Automation, 1998, 14(4) : 601 612.
  • 5Krivts I L. Optimization of performance characteristics of electropneumatic (two-stage) servo valve [J], Transac- tions of the ASME, 2004, 126 416-420.
  • 6Miyajima T, Fujita T, Sakaki K, et al. Development of a digital control system for high performance pneumatic ser- vo valve[J]. Journal o{ the International Societies for Pre- cision Engineering and Nanoteehnology, 2007, 31 (2) : 156-161.
  • 7Sorli M, Figliolini G, Almondo A. Mechatronic model and experimental validation of a pneumatic servo-solenoid valve [J]. Journal of Dynamic Systems, Measurement, and Control, 2010, 132(5): 054503-1-054503-10.
  • 8Giousouf M, Kovacs G. Dielectric elastomer actuators used for pneumatic valve teehnology[J]. Smart Materials and Structures, 2013, 22(10): 104010 1-104010-6.
  • 9Kawashima K, Ishii Y, Funaki T, et al. Determination of flow rate characteristics of pneumatic solenoid valves using an isothermal chamber[J]. Journal of Fluids Engineering, 2004, 126(2): 273-279.
  • 10Wait K W, Goldfarb M. Enhanced performance and sta- bility in pneumatic servosystems with supplemental me- chanical damping[J]. Journal of Dynamic Systems, Meas urement, and Control, 2010,132(4) : 041012 1-041012 8.

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部