期刊文献+

等离子体涡电磁散射特性及隐身性能 被引量:3

Scattering and Stealth of Plasma Vortex
下载PDF
导出
摘要 针对非均匀等离子体在飞行器隐身中的应用,采用分段线性电流密度递归卷积时域有限差分(PLJERC-FDTD)方法计算等离子体涡及涡串电磁散射特性,分析等离子体涡对飞行器隐身性能影响。计算表明,等离子体涡在很大频率区间对电磁波吸收效果显著,RCS降低很大,具有明显的隐身效果。等离子体涡表现出一定规律性的极化特性,对L,S和C波段电磁波具有不同的吸收、反射特性。 Aiming at the non-uniform plasma application in aircraft stealth, a piecewise linear current density recursive convolution finite-different time-domain (PLJERC-FDTD) algorithm is applied to the study on the scattering for the plasma vortex and plasma vortex cluster. The effects of plasma vortex on the aircraft stealth are analyzed. The results illustrate that the plasma vortex can absorb electromagnetic waves obviously, and the smaller radar cross section (RCS) is obtained comparing with RCS without plasma vortex. The stealth performance of vortex is remarkable. The RCS vs. polarization angle and the characteristics which electromagnetic waves are absorbed and reflected for L, S and C band follow some laws.
出处 《航空学报》 EI CAS CSCD 北大核心 2008年第2期304-308,共5页 Acta Aeronautica et Astronautica Sinica
关键词 时域有限差分 电磁波 等离子体 雷达散射截面 隐身 FDTD electromagnetic wave plasma vortex RCS stealth
  • 相关文献

参考文献6

  • 1Shang S J. Plasma injection for hypersonic blunt-body drag reduction[J].AIAA Journal, 2002, 40 (6):1178- 1186.
  • 2Appartaim R, Mezonlin E D, Johnson J A. Turbulence in plasma-induced hypersonic drag reduction [J]. AIAA Journal, 2002, 40 (10):1979-1983.
  • 3Soloviey V R, Krivtsov V M, Konchakov A M. Drag reduction by plasma filaments over supersonic forebodies[J].AIAA Journal, 2003, 41 (12):2403-2409.
  • 4Gregolre D J, Santoru J, Schumacher R W. Electromagnetic-wave propagation in unmagnetized plasmas [R]. AD-A250710, 1992.
  • 5Yang Lixia. 3D FDTD implementation for scattering of electric anisotropic dispersive medium using recursive convolution method [J]. Int J Infrared Millim Waves, 2007, 28(7) : 557-565.
  • 6孙明波,梁剑寒,金亮,侯中喜,王振国.二维超声速混合层的大涡模拟[J].国防科技大学学报,2005,27(5):86-90. 被引量:6

二级参考文献9

  • 1Barber T J, Chiappetta L M, et al. An Assessment of Parameters Influencing the Prediction of Shear Layer Mixing[J].Journal of Propulsion and Power, 15(l):45-53, 1999.
  • 2Georgiadis N J, Yoder D A, DeBonis J R. A Comparison of Three Navier-Stokes Solvers for Exhaust Nozzle Flowfields[R]. AIAA Paper 99-0748, 1999.
  • 3Goebel S G ,Dutton J C .An Experimental Study of Turbulent Compressible Mixing Layers[J]. AIAA Journal,29(4):538-546, 1991.
  • 4Nicholas J G.Development of a Hybrid RANS/LES Method for Compressible MixingLayer Simulations[R]. AIAA paper 2001-0289,2001.
  • 5Ghosal S. An Analysis of Numerical Errors in Large Eddy Simulations of Turbulence[J]. Journal of Computational Physics, 1996, 125:187-206.
  • 6Kravchenko A G , Main P.On The Effect of Numerical Errors in Large Eddy Simulations of Turbulent Flows[J]. Journal of Computational Physics,1996, 131:310-322.
  • 7Blin L,Hadjadj A ,Vervisch L. Large Eddy Simulations of Compressible Turbulent Flows[R]. AIAA paper 99-0787,1999.
  • 8Garnier E ,Sagaut P. Large Eddy Simulation of Shock/Boundary-Layer Interaction[J]. AIAA Journal,2002,40(10).
  • 9Shu C W ,Osher S. Efficient Implementation of Essentially Non-Oscillatory Shock-Capturing Schemes II[J]. Journal of Computational Physics, 1989,83(1):32-87.

共引文献5

同被引文献25

引证文献3

二级引证文献9

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部